High School Math : Intermediate Single-Variable Algebra

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Polynomials

If \displaystyle f(x)=x^{3}-1 and \displaystyle g(x)=x^{2}+1, what is \displaystyle g(f(2))?

Possible Answers:

\displaystyle 12

\displaystyle 32

\displaystyle 50

\displaystyle 124

\displaystyle 90

Correct answer:

\displaystyle 50

Explanation:

\displaystyle g(f(2)) is a composite function where \displaystyle f(2) is plugged into \displaystyle g(x):

\displaystyle f(2)=(2)^{3}-1=8-1=7

\displaystyle g(7)=(7)^{2}+1=49+1=50

 

Example Question #242 : Algebra Ii

Simplify the following expression: 

\displaystyle 3x^9y^4 \cdot (2y)^3.

Possible Answers:

\displaystyle 18x^9y^6

\displaystyle 11x^9y^7

\displaystyle 24x^9y^7

\displaystyle 24x^9y^{12}

Correct answer:

\displaystyle 24x^9y^7

Explanation:

First, multiply out the second expression so that you get \displaystyle 8y^3.

Then, multiply your like terms, taking care to remember that when multiplying terms that have the same base, you add the exponents. Thus, you get \displaystyle 24x^9y^{12}.

Example Question #251 : Algebra Ii

Simplify:

\displaystyle \frac{13x^2y^5z^9}{169xy^5z^4}

Possible Answers:

\displaystyle \frac{x}{13}

\displaystyle \frac{xz^5}{13}

\displaystyle \frac{xz^5}{169}

\displaystyle xy^5

\displaystyle xz^5

Correct answer:

\displaystyle \frac{xz^5}{13}

Explanation:

Focus on each pair of like terms. The \displaystyle y's completely cancel out, there is one \displaystyle x left on top, and five \displaystyle z's left on the bottom. 

\displaystyle \frac{13}{169} reduces to \displaystyle \frac{1}{13}.

Put that all together to get \displaystyle \frac{xz^5}{13}

Example Question #2 : Simplifying Polynomials

Simplify.

\displaystyle x^{-6}x^3x^9

Possible Answers:

\displaystyle x^{12}

\displaystyle x^{-12}

\displaystyle x^6

\displaystyle x

\displaystyle x^{-6}

Correct answer:

\displaystyle x^6

Explanation:

Put the negative exponent on the bottom so that you have \displaystyle \frac{x^{12}}{x^{6}} which simplifies further to \displaystyle x^{6}.

Example Question #1 : Simplifying Polynomials

Expand this expression:

\displaystyle (x-4)\displaystyle (2x+4)

Possible Answers:

\displaystyle 2x^2 + 4x + 16

\displaystyle 2x^2 - 4x + 16

\displaystyle 2x^2 - 4x - 16

\displaystyle 2x^2 + 4x - 16

\displaystyle 2x - 4x - 16

Correct answer:

\displaystyle 2x^2 - 4x - 16

Explanation:

Use the FOIL method (First, Outer, Inner, Last):

\displaystyle x * 2x = 2x^2

\displaystyle x * 4 = 4x

\displaystyle -4 * 2x = -8x

\displaystyle -4 * 4 = -16

Put all of these terms together:

\displaystyle 2x^2 + 4x - 8x - 16

Combine like terms:

\displaystyle 2x^2 - 4x - 16

Example Question #2 : Intermediate Single Variable Algebra

Simplify the following polynomial:

\displaystyle ab^{-2}(a^2b+a^{-1}b^3-a^3b^{-1})

Possible Answers:

\displaystyle \frac{a^3}{b}+a-\frac{a^4}{b^3}

\displaystyle \frac{a^3}{b}+b^2-\frac{a^4}{b^3}

\displaystyle \frac{a^3}{b}+b-\frac{a^3}{b^4}

\displaystyle \frac{a^2}{b}+b-\frac{a^4}{b^3}

\displaystyle \frac{a^3}{b}+b-\frac{a^4}{b^3}

Correct answer:

\displaystyle \frac{a^3}{b}+b-\frac{a^4}{b^3}

Explanation:

To simplify the polynomial, begin by multiplying the first binomial by every term within the parentheses:

\displaystyle ab^{-2}(a^2b+a^{-1}b^3-a^3b^{-1})

\displaystyle aa^2b^{-2}b+aa^{-1}b^{-2}b^3-aa^3b^{-2}b^{-1}

Now, combine like terms:

\displaystyle a^3b^{-1}+b^1-a^4b^{-3}

 

Convert the polynomial into fraction form:

\displaystyle \frac{a^3}{b}+b-\frac{a^4}{b^3}

Example Question #3 : Intermediate Single Variable Algebra

Simplify the following polynomial:

\displaystyle \frac{-18a^{-2}b^3c^{-4}}{12ab^{-2}c^{-3}}

Possible Answers:

\displaystyle \frac{-3b^4}{2a^3c}

\displaystyle \frac{-5b^5}{2a^3c}

\displaystyle \frac{-3b^5}{2ac}

\displaystyle \frac{-3b^5}{2a^3c^2}

\displaystyle \frac{-3b^5}{2a^3c}

Correct answer:

\displaystyle \frac{-3b^5}{2a^3c}

Explanation:

To simplify the polynomial, begin by rearranging the terms to have positive exponents:

\displaystyle \frac{-18a^{-2}b^3c^{-4}}{12ab^{-2}c^{-3}}

\displaystyle \frac{-18b^3b^2c^{3}}{12aa^2c^{4}}

Now, combine like terms:

\displaystyle \frac{-18b^5}{12a^3c^{1}}

 

Simplify the integers:

\displaystyle \frac{-3b^5}{2a^3c}

Example Question #5 : Simplifying Polynomials

Simplify the following polynomial:

\displaystyle (5n^{3x}-2m^{x+2})^2

Possible Answers:

\displaystyle 5n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}

\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+2m^{2x+4}

\displaystyle 25n^{6x}-10n^{3x}m^{x+2}+4m^{2x+4}

\displaystyle 10n^{6x}-20n^{3x}m^{x+2}+2m^{2x+4}

\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}

Correct answer:

\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}

Explanation:

Squaring the polynomial is equivalent to:

\displaystyle (5n^{3x}-2m^{x+2})^2

\displaystyle (5n^{3x}-2m^{x+2})(5n^{3x}-2m^{x+2})

 

Use the FOIL method to multiply the terms:

F - First

O - Outer

I - Inner

L - Last

 

\displaystyle 25n^{6x}-10n^{3x}m^{x+2}-10n^{3x}m^{x+2}+4m^{2x+4}

 

Combine like terms:

\displaystyle 25n^{6x}-20n^{3x}m^{x+2}+4m^{2x+4}

Example Question #6 : Simplifying Polynomials

Simplify the following polynomial:

\displaystyle (\frac{-a^{-2}b^3c^{-1}}{3a^{-4}b^{-1}c^3})^{-2}

Possible Answers:

\displaystyle \frac{9c^8}{a^{4}b^8}

\displaystyle \frac{c^8}{9a^{2}b^8}

\displaystyle \frac{9c^8}{a^{2}b^8}

\displaystyle \frac{9c^8}{a^{4}b^4}

\displaystyle \frac{c^8}{9a^{4}b^8}

Correct answer:

\displaystyle \frac{9c^8}{a^{4}b^8}

Explanation:

To simplify the polynomial, begin by rearranging the terms to have positive exponents:

\displaystyle (\frac{-a^{-2}b^3c^{-1}}{3a^{-4}b^{-1}c^3})^{-2}

\displaystyle (\frac{-a^{4}b^3b^1}{3a^{2}c^3c^1})^{-2}

Rearrange the terms once again so that the outer exponent is positive. Also, combine like terms:

\displaystyle (\frac{-3c^4}{a^{2}b^4})^{2}

 

Now, square the polynomial:

\displaystyle \frac{9c^8}{a^{4}b^8}

Example Question #7 : Simplifying Polynomials

Simplify the following polynomial:

\displaystyle (5a)(6a^2b)(3ab^3)+(2a)^2(3b^3)(2a^2b)

Possible Answers:

\displaystyle 114a^4b^3

\displaystyle 114a^2b^4

\displaystyle 114a^4b^2

\displaystyle 114a^3b^4

\displaystyle 114a^4b^4

Correct answer:

\displaystyle 114a^4b^4

Explanation:

To simplify the polynomial, begin by combining the terms within the parentheses and multiplying the integers:

 

\displaystyle (5a)(6a^2b)(3ab^3)+(2a)^2(3b^3)(2a^2b)

\displaystyle 90a^4b^4+24a^4b^4

 

Now, add together like terms:

\displaystyle 90a^4b^4+24a^4b^4=114a^4b^4

Learning Tools by Varsity Tutors