ISEE Middle Level Quantitative : Coordinate Geometry

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find A Line On A Coordinate Plane

Give the equation of the line through point  that has slope .

Possible Answers:

Correct answer:

Explanation:

Use the point-slope formula with 

Example Question #2 : How To Find A Line On A Coordinate Plane

Which is the greater quantity?

(A) The slope of the line 

(B) The slope of the line 

Possible Answers:

(A) and (B) are equal

(B) is greater

It is impossible to determine which is greater from the information given

(A) is greater

Correct answer:

(A) is greater

Explanation:

Rewrite each in the slope-intercept form,  will be the slope.

The slope of this line is .

 

The slope of this line is .

 

Since , (A) is greater.

Example Question #1 : How To Find A Line On A Coordinate Plane

Which is the greater quantity?

(A) The slope of the line 

(B) The slope of the line 

Possible Answers:

(B) is greater

(A) and (B) are equal

It is impossible to determine which is greater from the information given

(A) is greater

Correct answer:

(A) and (B) are equal

Explanation:

Rewrite each in the slope-intercept form,  will be the slope.

The slope of the line of  is 

 

The slope of the line of  is also 

 

The slopes are equal.

Example Question #2 : Geometry

 and  are positive integers, and . Which is the greater quantity?

(a) The slope of the line on the coordinate plane through the points  and .

(b) The slope of the line on the coordinate plane through the points  and .

Possible Answers:

(b) is the greater quantity

It is impossible to determine which is greater from the information given

(a) and (b) are equal

(a) is the greater quantity

Correct answer:

(a) and (b) are equal

Explanation:

The slope of a line through the points  and  can be found by setting 

in the slope formula:

The slope of a line through the points  and  can be found similarly:

The lines have the same slope.

Example Question #3 : Coordinate Geometry

A line passes through the points with coordinates  and , where . Which expression is equal to the slope of the line?

Possible Answers:

Undefined

Correct answer:

Explanation:

The slope of a line through the points  and , can be found by setting 

:

in the slope formula:

Example Question #1 : How To Find The Points On A Coordinate Plane

Choose the best answer from the four choices given.

The point (15, 6) is on which of the following lines?

Possible Answers:

Correct answer:

Explanation:

For this problem, simply plug in the values for the point (15,6) into the different equations (15 for the -value and 6 for the -value) to see which one fits.

          (NO)

 

         (YES!)

 

      (NO)

 

       (NO)  

Example Question #2 : How To Find The Points On A Coordinate Plane

Choose the best answer from the four choices given.

What is the point of intersection for the following two lines?

Possible Answers:

Correct answer:

Explanation:

At the intersection point of the two lines the - and - values for each equation will be the same. Thus, we can set the two equations as equal to each other:

 

 

 

 

 

 

 

point of intersection

Example Question #3 : How To Find The Points On A Coordinate Plane

Choose the best answer from the four choices given.

What is the -intercept of the line represented by the equation

Possible Answers:

Correct answer:

Explanation:

In the formula , the y-intercept is represented by (because if you set to zero, you are left with ).

Thus, to find the -intercept, set the value to zero and solve for .

 

 

 

 

Example Question #4 : How To Find The Points On A Coordinate Plane

The ordered pair is in which quadrant?

Possible Answers:

Quadrant III

Quadrant II

Quadrant V

Quadrant I

Quadrant IV

Correct answer:

Quadrant II

Explanation:

There are four quadrants in the coordinate plane. Quadrant I is the top right, and they are numbered counter-clockwise. Since the x-coordinate is , you go to the left one unit (starting from the origin). Since the y-coordinate is , you go upwards four units. Therefore, you are in Quadrant II.

Example Question #1 : Coordinate Geometry

If angles s and r add up to 180 degrees, which of the following best describes them?

Possible Answers:

Complementary

Acute

Obtuse

Supplementary. 

Correct answer:

Supplementary. 

Explanation:

Two angles that are supplementary add up to 180 degrees. They cannot both be acute, nor can they both be obtuse. Therefore, "Supplementary" is the correct answer. 

Learning Tools by Varsity Tutors