All ISEE Middle Level Reading Resources
Example Questions
Example Question #1 : Distinguishing Between Fact And Fiction In Natural Science Passages
"Interpreting the Copernican Revolution" by Matthew Minerd (2014)
The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.
With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.
However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.
Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.
How was the underlined view about geocentrism incorrect?
The view is actually reflective of the history of thought and does not contradict it.
Religion had always despised human existence anyway, so this is not much of a change.
Many earlier thinkers actually thought the earth was rather insignificant compared with the other celestial bodies.
Religions gladly accepted the point and moved on.
None of the other answers
Many earlier thinkers actually thought the earth was rather insignificant compared with the other celestial bodies.
For this question, the key two sentences are: "The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest 'sphere' above the earth was the most important being in the physical universe." These state that geocentric thinkers in the ancient and medieval period actually believed that the higher "spheres" of heaven were more important than earth.
Example Question #1 : Identifying And Analyzing Details In Science Passages
"Darwinism's Effect on Science" by Matthew Minerd (2014)
For much of the history of human thought, the sciences have studied subjects that seemed to be eternal and unchanging. Even the basic laws of the Nile’s flooding were investigated in the hopes of finding never-altering laws. Similarly, the scientific investigations of the ancient Near East and Greece into the regular laws of the stars ultimately looked for constant patterns. This overall pattern of scientific reasoning has left deep marks on the minds of almost all thinkers and found its apotheosis in modern physics. From the time of the early renaissance to the nineteenth century, physics represented the ultimate expression of scientific investigation for almost all thinkers. Its static laws appeared to be the unchanging principles of all motion and life on earth. By the nineteenth century, it had appeared that only a few details had to be “cleared up” before all science was basically known.
In many ways, this situation changed dramatically with the arrival of Darwinism. It would change even more dramatically in early twentieth-century physics as well. Darwin’s theories of evolution challenged many aspects of the “static” worldview. Even those who did not believe that a divine being created an unchanging world were shaken by the new vistas opened up to science by his studies. It had been a long-accepted inheritance of Western culture to believe that the species of living organisms were unchanging in nature. Though there might be many different kinds of creatures, the kinds themselves were not believed to change. The thesis of a universal morphing of types shattered this cosmology, replacing the old world-view with a totally new one. Among the things that had to change in light of Darwin’s work was the very view of science held by most people.
According to the passage, what is the source of modern science?
None of the other answers
Greek astronomy
Renaissance humanists
Egyptian mathematics
Renaissance scientists
None of the other answers
This passage does not really provide a direct history of the "rise of science" and its history. It does provide examples of a certain outlook, using Egypt, the Near East, and Greece as examples. However, none of these are claimed to be the primary ancestors of science.
Example Question #37 : Main Idea, Details, Opinions, And Arguments In Narrative Science Passages
"Darwinism's Effect on Science" by Matthew Minerd (2014)
For much of the history of human thought, the sciences have studied subjects that seemed to be eternal and unchanging. Even the basic laws of the Nile’s flooding were investigated in the hopes of finding never-altering laws. Similarly, the scientific investigations of the ancient Near East and Greece into the regular laws of the stars ultimately looked for constant patterns. This overall pattern of scientific reasoning has left deep marks on the minds of almost all thinkers and found its apotheosis in modern physics. From the time of the early renaissance to the nineteenth century, physics represented the ultimate expression of scientific investigation for almost all thinkers. Its static laws appeared to be the unchanging principles of all motion and life on earth. By the nineteenth century, it had appeared that only a few details had to be “cleared up” before all science was basically known.
In many ways, this situation changed dramatically with the arrival of Darwinism. It would change even more dramatically in early twentieth-century physics as well. Darwin’s theories of evolution challenged many aspects of the “static” worldview. Even those who did not believe that a divine being created an unchanging world were shaken by the new vistas opened up to science by his studies. It had been a long-accepted inheritance of Western culture to believe that the species of living organisms were unchanging in nature. Though there might be many different kinds of creatures, the kinds themselves were not believed to change. The thesis of a universal morphing of types shattered this cosmology, replacing the old world-view with a totally new one. Among the things that had to change in light of Darwin’s work was the very view of science held by most people.
Which of the following gives the best example of the “static worldview” discussed in the second paragraph?
"In many ways, this situation changed dramatically with the arrival of Darwinism."
"Even those who did not believe that a divine being created an unchanging world were shaken by the new vistas opened up to science by his studies."
"Among the things that had to change in light of Darwin’s work was the very view of science held by most people."
"Though there might be many different kinds of creatures, the kinds themselves were not believed to change."
"The thesis of a universal morphing of types shattered this cosmology, replacing the old world-view with a totally new one."
"Though there might be many different kinds of creatures, the kinds themselves were not believed to change."
Among the answer choices provided, only one implies an example of the static worldview that preceded Darwin. The answer states that the kinds of creatures were believed not change. This is an example of an outlook that believes things to be unchanging.
Example Question #2 : Identifying And Analyzing Details In Science Passages
"Interpreting the Copernican Revolution" by Matthew Minerd (2014)
The expressions of one discipline can often alter the way that other subjects understand themselves. Among such cases are numbered the investigations of Nicolaus Copernicus. Copernicus is best known for his views concerning heliocentrism, a view which eventually obliterated many aspects of the ancient/medieval worldview, at least from the standpoint of physical science. It had always been the natural view of mankind that the earth stood at the center of the universe, a fixed point in reference to the rest of the visible bodies. The sun, stars, and planets all rotated around the earth.
With time, this viewpoint became one of the major reference points for modern life. It provided a provocative image that was used—and often abused—by many people for various purposes. For those who wished to weaken the control of religion on mankind, it was said that the heliocentric outlook proved man’s insignificance. In contrast with earlier geocentrism, heliocentrism was said to show that man is not the center of the universe. He is merely one small being in the midst of a large cosmos. However, others wished to use the “Copernican Revolution” in a very different manner. These thinkers wanted to show that there was another “recentering” that had to happen. Once upon a time, we talked about the world. Now, however, it was necessary to talk of man as the central reference point. Just as the solar system was “centered” on the sun, so too should the sciences be centered on the human person.
However, both of these approaches are fraught with problems. Those who wished to undermine the religious mindset rather misunderstood the former outlook on the solar system. The earlier geocentric mindset did not believe that the earth was the most important body in the heavens. Instead, many ancient and medieval thinkers believed that the highest “sphere” above the earth was the most important being in the physical universe. Likewise, the so-called “Copernican Revolution” in physics was different from the one applied to the human person. Copernicus’ revolution showed that the human point of view was not the center, whereas the later forms of “Copernican revolution” wished to show just the opposite.
Of course, there are many complexities in the history of such important changes in scientific outlook. Nevertheless, it is fascinating to see the wide-reaching effects of such discoveries, even when they have numerous, ambiguous effects.
Which of the following would be a direct consequence of belief in geocentrism?
That the sun is stationary
That all bodies in space have independent orbits
That the earth does not move
That even the stars in space move
That the universe is finite in size
That the earth does not move
The theory of geocentrism held that the earth was the center of the solar system (indeed of all things) and that it was fixed in its location. This means that the earth presumably did not move at all. It was "a fixed point in reference to the rest of the visible bodies." They all rotated around it.
Example Question #6 : Argumentative Science Passages
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
Why did Mr. Trouvelot bring gypsy moths to Boston?
He wanted to feed them to the birds he kept in his aviary.
He wanted to use them combat other insect pests that were ruining his crops.
Mr. Trouvelot did not bring gypsy moths to Boston; he brought them to Yellowstone National Park.
He wanted to release them as a scientific experiment.
He was trying to find a moth that would make cocoons he could sell.
He was trying to find a moth that would make cocoons he could sell.
The second paragraph of the passage tells the story of how Mr. Trouvelot released the gypsy moths, so we should look there for our answer. In it, the author writes that the gypsy moth “was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69”; this allows us to eliminate the answer “Mr. Trouvelot did not bring gypsy moths to Boston; he brought them to Yellowstone National Park.” The author then explains that Trouvelot “was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America.” Therefore, the correct answer is “He was trying to find a moth that would make a cocoon he could sell.”
Example Question #103 : Passage Meaning And Construction
Adapted from “Introduced Species That Have Become Pests” in Our Vanishing Wild Life, Its Extermination and Protection by William Temple Hornaday (1913)
The man who successfully transplants or "introduces" into a new habitat any persistent species of living thing assumes a very grave responsibility. Every introduced species is doubtful gravel until panned out. The enormous losses that have been inflicted upon the world through the perpetuation of follies with wild vertebrates and insects would, if added together, be enough to purchase a principality. The most aggravating feature of these follies in transplantation is that never yet have they been made severely punishable. We are just as careless and easygoing on this point as we were about the government of the Yellowstone Park in the days when Howell and other poachers destroyed our first national bison herd, and when caught red-handed—as Howell was, skinning seven Park bison cows—could not be punished for it, because there was no penalty prescribed by any law. Today, there is a way in which any revengeful person could inflict enormous damage on the entire South, at no cost to himself, involve those states in enormous losses and the expenditure of vast sums of money, yet go absolutely unpunished!
The gypsy moth is a case in point. This winged calamity was imported at Maiden, Massachusetts, near Boston, by a French entomologist, Mr. Leopold Trouvelot, in 1868 or 69. History records the fact that the man of science did not purposely set free the pest. He was endeavoring with live specimens to find a moth that would produce a cocoon of commercial value to America, and a sudden gust of wind blew out of his study, through an open window, his living and breeding specimens of the gypsy moth. The moth itself is not bad to look at, but its larvae is a great, overgrown brute with an appetite like a hog. Immediately Mr. Trouvelot sought to recover his specimens, and when he failed to find them all, like a man of real honor, he notified the State authorities of the accident. Every effort was made to recover all the specimens, but enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts. The method of the big, nasty-looking mottled-brown caterpillar was very simple. It devoured the entire foliage of every tree that grew in its sphere of influence.
The gypsy moth spread with alarming rapidity and persistence. In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!
The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date. It is steadily spreading in three directions from Boston, its original point of departure, and when it strikes the State of New York, we, too, will begin to pay dearly for the Trouvelot experiment.
At the time the passage was written, in which of the following states was the gypsy moth NOT found?
New York
Connecticut
Massachusetts
Rhode Island
New Hampshire
New York
The part of the passage most relevant to this question is found in the last paragraph:
“The spread of this pest has been retarded, but the gypsy moth never will be wholly stamped out. Today it exists in Rhode Island, Connecticut, and New Hampshire, and it is due to reach New York at an early date.”
We can tell that “New York” is the answer based on this quotation, but one state remains unaccounted for: Massachusetts. Earlier in the passage, we are told that the gypsy moth “was imported at Maiden, Massachusetts, near Boston,” and that “enough escaped to produce progeny that soon became a scourge to the trees of Massachusetts.” We can infer that the gypsy moth is found in Massachusetts at the time the passage was written, especially given that the author writes, “In course of time, the state authorities of Massachusetts were forced to begin a relentless war upon it, by poisonous sprays and by fire. It was awful! Up to this date (1912) the New England states and the United States Government service have expended in fighting this pest about $7,680,000!” This quotation—especially the author’s use of the transition “Up to this date”—suggests that the gypsy moth remained a problem in Massachusetts at the time the author was writing.
Example Question #52 : Understanding The Content Of Natural Science Passages
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
A stoat might also be called __________.
an ermine, depending on its fur color
a weasel, depending on what it eats
a weasel, depending on its fur color
a weasel, depending on where it lives
an ermine, depending on where it lives
an ermine, depending on its fur color
The passage’s last paragraph provides the information we need to answer this question. The paragraph begins by describing “the common stoat.” Eventually, it says, “But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine.” While this sentence is followed by “A similar example is afforded by the weasel,” this means that the weasel is another example of an animal that changes its fur color, not that a stoat can be called a weasel. It means that a weasel is a distinct type of animal. The correct answer is that a stoat might also be called “an ermine, depending on its fur color.”
Example Question #1 : Identifying And Analyzing Details In Science Passages
Adapted from Cassell’s Natural History by Francis Martin Duncan (1913)
The penguins are a group of birds inhabiting the southern ocean, for the most part passing their lives in the icy waters of the Antarctic seas. Like the ratitae, penguins have lost the power of flight, but the wings are modified into swimming organs and the birds lead an aquatic existence and are scarcely seen on land except in the breeding season. They are curious-looking creatures that appear to have no legs, as the limbs are encased in the skin of the body and the large flat feet are set so far back that the birds waddle along on land in an upright position in a very ridiculous manner, carrying their long narrow flippers held out as if they were arms. When swimming, penguins use their wings as paddles while the feet are used for steering.
Penguins are usually gregarious—in the sea, they swim together in schools, and on land, assemble in great numbers in their rookeries. They are very methodical in their ways, and on leaving the water, the birds always follow well-defined tracks leading to the rookeries, marching with much solemnity one behind the other in soldierly order.
The largest species of penguins are the king penguin and the emperor penguin, the former being found in Kerguelen Land, the Falklands, and other southern islands, and the latter in Victoria Land and on the pack ice of the Antarctic seas. As they are unaccustomed from the isolation of their haunts to being hunted and persecuted by man, emperor penguins are remarkably fearless, and Antarctic explorers invading their territory have found themselves objects of curiosity rather than fear to the strange birds who followed them about as if they were much astonished at their appearance.
The emperor penguin lays but a single egg and breeds during the intense cold and darkness of the Antarctic winter. To prevent contact with the frozen snow, the bird places its egg upon its flat webbed feet and crouches down upon it so that it is well covered with the feathers. In spite of this precaution, many eggs do not hatch and the mortality amongst the young chicks is very great.
Where do emperor penguins live?
On ice in the Antarctic seas
Kerguelen Land
Northern Canada
The Falklands
Greenland
On ice in the Antarctic seas
In its third paragraph, the passage states, “The largest species of penguins are the king penguin and the emperor penguin, the former being found in Kerguelen Land, the Falklands, and other southern islands, and the latter in Victoria Land and on the pack ice of the Antarctic seas.” The phrasing of this might be a bit confusing, so it’s good to pause and work it out. The author is referring to the king penguin when he says “the former,” since he mentions the king penguin first, and he is referring to the emperor penguin when he says “the latter,” since he mentions the emperor penguin second. This means that when the author writes “the latter [being found] in Victoria Land and on the pack ice of the Antarctic seas,” he is describing where the emperor penguin lives. This means that “On ice in the Antarctic seas” is the correct answer. “Kerguelen Land” and “the Falklands” are mentioned as places where the king penguin lives, and the passage doesn’t mention Northern Canada or Greenland at all.
Example Question #2 : Analyzing Cause And Effect In Natural Science Passages
Adapted from “Feathers of Sea Birds and Wild Fowl for Bedding” from The Utility of Birds by Edward Forbush (ed. 1922)
In the colder countries of the world, the feathers and down of waterfowl have been in great demand for centuries as filling for beds and pillows. Such feathers are perfect non-conductors of heat, and beds, pillows, or coverlets filled with them represent the acme of comfort and durability. The early settlers of New England saved for such purposes the feathers and down from the thousands of wild-fowl which they killed, but as the population increased in numbers, the quantity thus furnished was insufficient, and the people sought a larger supply in the vast colonies of ducks and geese along the Labrador coast.
The manner in which the feathers and down were obtained, unlike the method practiced in Iceland, did not tend to conserve and protect the source of supply. In Iceland, the people have continued to receive for many years a considerable income by collecting eider down, but there they do not “kill the goose that lays the golden eggs.” Ducks line their nests with down plucked from their own breasts and that of the eider is particularly valuable for bedding. In Iceland, these birds are so carefully protected that they have become as tame and unsuspicious as domestic fowls In North America. Where they are constantly hunted they often conceal their nests in the midst of weeds or bushes, but in Iceland, they make their nests and deposit their eggs in holes dug for them in the sod. A supply of the ducks is maintained so that the people derive from them an annual income.
In North America, quite a different policy was pursued. The demand for feathers became so great in the New England colonies about the middle of the eighteenth century that vessels were fitted out there for the coast of Labrador for the express purpose of securing the feathers and down of wild fowl. Eider down having become valuable and these ducks being in the habit of congregating by thousands on barren islands of the Labrador coast, the birds became the victims of the ships’ crews. As the ducks molt all their primary feathers at once in July or August and are then quite incapable of flight and the young birds are unable to fly until well grown, the hunters were able to surround the helpless birds, drive them together, and kill them with clubs. Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.
This practice, followed by the almost continual egging, clubbing, shooting, etc. by Labrador fishermen, may have been a chief factor in the extinction of the Labrador duck, that species of supposed restricted breeding range. No doubt had the eider duck been restricted in its breeding range to the islands of Labrador, it also would have been exterminated long ago.
What caused the Labrador feather voyages to cease?
The island’s ecosystem shifted to support a larger population of bears, making the voyages too dangerous to be worthwhile.
The ducks began producing feathers of significantly lower quality.
The ducks changed their migration pattern significantly.
The ducks relocated to an inaccessible island.
So many ducks were killed that the voyages became unprofitable.
So many ducks were killed that the voyages became unprofitable.
This question is answered by a sentence at the end of the passage’s third paragraph: “Otis says that millions of wildfowl were thus destroyed and that in a few years their haunts were so broken up by this wholesale slaughter and their numbers were so diminished that feather voyages became unprofitable and were given up.” The correct answer is thus “So many ducks were killed that the voyages became unprofitable.”
Example Question #1 : Identifying And Analyzing Details In Science Passages
Adapted from “Some Strange Nurseries” by Grant Allen in A Book of Natural History (1902, ed. David Starr Jordan)
Among the larger lizards, a distinct difference may be observed between the American alligator and its near ally, the African crocodile. On the banks of the Mississippi, the alligator lays a hundred eggs or thereabouts, which she deposits in a nest near the water’s edge, and then covers them up with leaves and other decaying vegetable matter. The fermentation of these leaves produces heat and so does for the alligator’s eggs what sitting does for those of hens and other birds: the mother deputes her maternal functions, so to speak, to a festering heap of decomposing plant-refuse. Nevertheless, she loiters about all the time to see what happens, and when the eggs hatch out, she leads her little ones down to the river, and there makes alligators of them. This is a simple nursery arrangement of the big lizards.
The African crocodile, on the other hand, does something different, and takes greater care for the safety of its young. It lays only about thirty eggs, but these it buries in warm sand, and then lies on top of them at night, both to protect them from attack and to keep them warm during the cooler hours. In short, it sits upon them. When the young crocodiles within the eggs are ready to hatch, they utter an acute cry. The mother then digs down to the eggs, and lays them freely on the surface, so that the little reptiles may have space to work their way out unimpeded. This they do by biting at the shell with a specially developed tooth; at the end of two hours’ nibbling they are free, and are led down to the water by their affectionate parent. In these two cases we see the beginnings of the instinct of hatching, which in birds has become almost universal.
What role do the “leaves and decaying vegetable matter” play in the life of an American alligator?
They provide nesting for the mother alligator.
They provide warmth for the alligator’s eggs.
They provide food for the alligator’s offspring
They are used by the alligators to bait the fish and small mammals that the alligator eats.
They provide protection from predators.
They provide warmth for the alligator’s eggs.
The passage says that the alligator lays her eggs and then covers them with leaves and vegetable matter; it then says that “The fermentation of these leaves produces heat and so does for the alligator’s eggs what sitting does for those of hens and other birds." So, the leaves produce “heat,” which fulfills the same function as “sitting does for . . . hens" Therefore, it can be reasonably determined that “they provide warmth for the alligator’s eggs.”
Certified Tutor