ISEE Upper Level Math : Sectors

Study concepts, example questions & explanations for ISEE Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Angle For A Percentage Of A Circle

Sector TYP occupies 43% of a circle. Find the degree measure of angle TYP.

 

Possible Answers:

\displaystyle 154.8^{\circ}

\displaystyle 15.5^{\circ}

\displaystyle 366^{\circ}

\displaystyle 430^{\circ}

Correct answer:

\displaystyle 154.8^{\circ}

Explanation:

Sector TYP occupies 43% of a circle. Find the degree measure of angle TYP.

Use the following formula and solve for x:

\displaystyle \frac{x}{360^{\circ}}100=43\%

Begin by dividing over the 100

\displaystyle \frac{x}{360^{\circ}}=.43

Then multiply by 360

\displaystyle x=.43*360^{\circ}=154.8^{\circ}

Example Question #1 : How To Find The Angle For A Percentage Of A Circle

If sector AJL covers 45% of circle J, what is the measure of sector AJL's central angle?

Possible Answers:

\displaystyle 145^{\circ}

\displaystyle 162^{\circ}

\displaystyle 45^{\circ}

\displaystyle 262^{\circ}

Correct answer:

\displaystyle 162^{\circ}

Explanation:

If sector AJL covers 45% of circle J, what is the measure of sector AJL's central angle?

To find an angle measure from a percentage, simply convert the percentage to a decimal and then multiply it by 360 degrees.

\displaystyle 45\%\rightarrow 0.45

\displaystyle 0.45 * 360^{\circ}=162^{\circ}

So, our answer is 162 degrees.

Example Question #1 : How To Find The Area Of A Sector

Sector

Give the area of the white region of the above circle if  has length \displaystyle 12 \pi

Possible Answers:

\displaystyle 243 \pi

\displaystyle 729 \pi

\displaystyle 81 \pi

\displaystyle 567 \pi

Correct answer:

\displaystyle 567 \pi

Explanation:

If we let \displaystyle C be the circumference of the circle, then the length of  is \displaystyle \frac{80}{360} = \frac{2}{9 } of the circumference, so

\displaystyle \frac{2}{9 } C = 12 \pi

\displaystyle \frac{9 }{2}\cdot \frac{2}{9 } C =\frac{9 }{2}\cdot 12 \pi

\displaystyle C =54\pi

The radius is the circumference divided by \displaystyle 2 \pi:

\displaystyle r= 54 \pi \div 2 \pi = 27

Use the formula to find the area of the entire circle:

\displaystyle A = \pi r ^{2} = \pi \left (27 \right )^{2} = 729 \pi

The area of the white region is \displaystyle 1 - \frac{2}{9} = \frac{7}{9} of that of the circle, or 

\displaystyle \frac{7}{9} \cdot 729 \pi = 567 \pi

 

Example Question #211 : Geometry

Sector

The circumference of the above circle is \displaystyle 30 \pi. Give the area of the shaded region.

Possible Answers:

\displaystyle 50 \pi

\displaystyle 400 \pi

\displaystyle 25 \pi

\displaystyle 100 \pi

Correct answer:

\displaystyle 50 \pi

Explanation:

The radius of a circle is found by dividing the circumference \displaystyle C = 30 \pi by \displaystyle 2 \pi:

\displaystyle r= \frac{C}{2 \pi}= \frac{30 \pi}{2 \pi} = 15

The area of the entire circle can be found by substituting for \displaystyle r in the formula:

\displaystyle A = \pi r ^{2} = \pi \cdot 15 ^{2} = 225 \pi.

The area of the shaded \displaystyle 80 ^{\circ } sector is \displaystyle \frac{80 }{360 } of the total area:

\displaystyle \frac{80 }{360 } \times 225 \pi = \frac{2}{9} \times 225 \pi = 50 \pi

Example Question #211 : Plane Geometry

While visiting a history museum, you see a radar display which consists of a circular screen with a highlighted wedge with an angle of \displaystyle 65^{\circ}. If the screen has a radius of 4 inches, what is the area of the highlighted wedge?

Possible Answers:

\displaystyle 14.23\pi in^2

\displaystyle 2.89\pi in^2

\displaystyle 2.89 in^2

\displaystyle 9.08\pi in^2

Correct answer:

\displaystyle 2.89\pi in^2

Explanation:

While visiting a history museum, you see a radar display which consists of a circular screen with a highlighted wedge with an angle of \displaystyle 65^{\circ}. If the screen has a radius of 4 inches, what is the area of the highlighted wedge?

To begin, let's recall our formula for area of a sector.

\displaystyle A_{sector}=\frac{\theta}{360^{\circ}}\pi r^2

Now, we have theta and r, so we just need to plug them in and simplify!

\displaystyle A_{sector}=\frac{65^{\circ}}{360^{\circ}}\pi (4in)^2=2.89\pi in^2

So our answer is \displaystyle 2.89\pi in^2

Example Question #1 : Sectors

A giant clock has a minute hand six feet long. How far, in inches, did the tip move between noon and 1:20 PM?

Possible Answers:

\displaystyle 96\pi \textrm{ in}

\displaystyle 48 \pi \textrm{ in}

\displaystyle 192 \pi \textrm{ in}

\displaystyle 384 \pi \textrm{ in}

\displaystyle 768 \pi \textrm{ in}

Correct answer:

\displaystyle 192 \pi \textrm{ in}

Explanation:

The distance that the tip of the minute hand moves during one hour is the circumference of a circle with radius 6 feet. This circumference is \displaystyle 2\pi r = 2 \pi \times 6 = 12\pi feet. One hour and twenty minutes is \displaystyle 1 \frac{1}{3} hours, so the tip of the hand moved \displaystyle 1 \frac{1}{3} \times 12 \pi = 16 \pi feet, or \displaystyle 16 \pi \times 12 = 192 \pi inches.

Example Question #2 : Sectors

A giant clock has a minute hand three feet long. How far, in inches, did the tip move between noon and 12:20 PM?

Possible Answers:

\displaystyle 24\pi \textrm{ in}

\displaystyle 18\pi \textrm{ in}

\displaystyle 12\pi \textrm{ in}

\displaystyle 36\pi \textrm{ in}

It is impossible to tell from the information given

Correct answer:

\displaystyle 24\pi \textrm{ in}

Explanation:

The distance that the tip of the minute hand moves during one hour is the circumference of a circle with radius \displaystyle 3 feet. This circumference is \displaystyle 2\pi r = 2 \pi \times 3 = 6\pi feet. \displaystyle 20 minutes is one-third of an hour, so the tip of the minute hand moves \displaystyle \frac{1}{3} \times 6\pi = 2\pi feet, or \displaystyle 2\pi \times 12 = 24\pi inches.

Example Question #2 : Sectors

Inscribed

In the above figure, express \displaystyle y in terms of \displaystyle x.

Possible Answers:

\displaystyle y = \frac{1}{2}x - \frac{3}{2}

\displaystyle y = x- \frac{1}{4}

\displaystyle y = \frac{1}{2}x - 10

\displaystyle y = x- \frac{27}{4}

Correct answer:

\displaystyle y = x- \frac{27}{4}

Explanation:

The measure of an arc -  - intercepted by an inscribed angle - \displaystyle \angle ACB - is twice the measure of that angle, so

\displaystyle 4y + 13 = 2 (2x- 7)

\displaystyle 4y + 13 = 4x- 14

\displaystyle 4y + 13 - 13 = 4x- 14 - 13

\displaystyle 4y = 4x- 27

\displaystyle \frac{4y}{4} = \frac{4x- 27}{4}

\displaystyle y = x- \frac{27}{4}

Example Question #1 : Sectors

Intercepted

In the above diagram, radius \displaystyle OA = 12.

Give the length of .

Possible Answers:

\displaystyle \frac{24 \pi }{5}

\displaystyle \frac{48 \pi }{5}

\displaystyle \frac{288\pi }{5}

\displaystyle \frac{72 \pi }{5}

Correct answer:

\displaystyle \frac{48 \pi }{5}

Explanation:

The circumference of a circle is \displaystyle 2 \pi multiplied by its radius , so

\displaystyle C = 2 \pi \cdot OA = 2 \pi \cdot 12 = 24 \pi.

\displaystyle \angle ACB, being an inscribed angle of the circle, intercepts an arc  with twice its measure:

The length of  is the circumference multiplied by \displaystyle \frac{144}{360}:

\displaystyle \frac{144}{360} \times 24 \pi = \frac{48 \pi }{5}.

Example Question #1 : How To Find The Length Of An Arc

While visiting a history museum, you see a radar display which consists of a circular screen with a highlighted wedge with an angle of \displaystyle 65^{\circ}. If the screen has a radius of 4 inches, what is the length of the arc of the highlighted wedge?

Possible Answers:

\displaystyle 3.01\pi in

\displaystyle 4.54in

\displaystyle 1.44in

\displaystyle 4.54\pi in

Correct answer:

\displaystyle 4.54in

Explanation:

While visiting a history museum, you see a radar display which consists of a circular screen with a highlighted wedge with an angle of \displaystyle 65^{\circ}. If the screen has a radius of 4 inches, what is the length of the arc of the highlighted wedge?

To begin, let's recall our formula for length of an arc.

\displaystyle Arc=\frac{\theta}{360^{\circ}}2 \pi r

Now, just plug in and simplify

 

\displaystyle Arc=\frac{65^{\circ}}{360^{\circ}}2 \pi (4in)=\frac{13^{\circ}}{9^{\circ}}\pi in\approx 4.54in

So, our answer is 4.54in

Learning Tools by Varsity Tutors