Linear Algebra : Vector-Vector Product

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Vector Vector Product

Compute \displaystyle A\cdot B, where 

\displaystyle A=\begin{bmatrix} 2\\ 3\\ 4\\ \end{bmatrix}

\displaystyle B=\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}

Possible Answers:

\displaystyle A\cdot B =\begin{bmatrix} 2 & 9& 10\\ 3& 6& 15 \\ 4& 20& 12 \end{bmatrix}

\displaystyle A\cdot B =\begin{bmatrix} 2 & 6& 10\\ 3& 9& 15 \\ 4& 12& 20 \end{bmatrix}

Not possible

Correct answer:

\displaystyle A\cdot B =\begin{bmatrix} 2 & 6& 10\\ 3& 9& 15 \\ 4& 12& 20 \end{bmatrix}

Explanation:

Before we compute the product of \displaystyle A, and \displaystyle B, we need to check if it is possible to take the product. We will check the dimensions. \displaystyle A is \displaystyle 3\times1, and \displaystyle B is \displaystyle 1\times3, so the dimensions of the resulting matrix will be \displaystyle 3\times3. Now let's compute it.

 

\displaystyle A\cdot B=\begin{bmatrix} 2\cdot1 & 2\cdot3 & 2\cdot 5\\ 3 \cdot 1& 3\cdot3 & 3 \cdot 5 \\ 4 \cdot 1 & 4\cdot3 & 4\cdot 5 \end{bmatrix} =\begin{bmatrix} 2 & 6& 10\\ 3& 9& 15 \\ 4& 12& 20 \end{bmatrix}

Example Question #1 : Vector Vector Product

Find the vector-vector product of the following vectors.

\displaystyle A=[1 \ 2]

\displaystyle B=\begin{bmatrix} 3\\ 5 \end{bmatrix}

Possible Answers:

\displaystyle 10

\displaystyle 11

It's not possible to multiply these vectors

\displaystyle 12

\displaystyle 13

Correct answer:

\displaystyle 13

Explanation:

\displaystyle A\cdot B=1\cdot3+2\cdot5=3+10=13

Example Question #2 : Vector Vector Product

Calculate \displaystyle \bf{A} \times \bf{B}, given 

\displaystyle \textbf{A}= 4\hat{i}-2\hat{j}

\displaystyle \textbf{B}= 1\hat{i}+3\hat{j}

Possible Answers:

\displaystyle \textbf{A} \times \textbf{B} = 14 \hat{j}

\displaystyle \textbf{A} \times \textbf{B} = 14 \hat{i}

\displaystyle \textbf{A} \times \textbf{B} = 14

\displaystyle \textbf{A} \times \textbf{B} = 14 \hat{k}

Correct answer:

\displaystyle \textbf{A} \times \textbf{B} = 14 \hat{k}

Explanation:

By definition, 

\displaystyle \textbf{A} \times \textbf{B} = \begin{vmatrix} \hat{i}& \hat{j}&\hat{k} \\ 4& -2& 0\\ 1& 3& 0 \end{vmatrix} =\hat{i}(0)-\hat{j}(0)+\hat{k}[4(3)-1(-2)] = 14 \hat{k}.

Example Question #3 : Vector Vector Product

What is the physical significance of the resultant vector \displaystyle \bf{C}, if \displaystyle \bf{C}= \bf{A} \times \bf{B}?

Possible Answers:

\displaystyle \bf{C} is orthogonal to both \displaystyle \bf{A} and \displaystyle \bf{B}.

\displaystyle \bf{C} is the projection of \displaystyle \bf{A} onto \displaystyle \bf{B}.

\displaystyle \bf{C} lies in the same plane that contains both \displaystyle \bf{A} and \displaystyle \bf{B}.

\displaystyle \bf{C} is a scalar.

Correct answer:

\displaystyle \bf{C} is orthogonal to both \displaystyle \bf{A} and \displaystyle \bf{B}.

Explanation:

By definition, the resultant cross product vector (in this case, \displaystyle \bf{C}) is orthogonal to the original vectors that were crossed (in this case, \displaystyle \bf{A} and \displaystyle \bf{B}).  In \displaystyle 3D, this means that \displaystyle \bf{C} is a vector that is normal to the plane containing \displaystyle \bf{A} and \displaystyle \bf{B}.

Example Question #133 : Matrices

\displaystyle \begin{align*}&\text{Find the product }A\times B \\&\text{Where }A=\begin{bmatrix}-18&12&-11&4&-19&13\end{bmatrix}\text{ and }B=\begin{bmatrix}-6\\-2\\-17\\-20\\-8\\10\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle 473

\displaystyle \text{The multiplication cannot be performed.}

\displaystyle 519

\displaystyle 556

Correct answer:

\displaystyle 473

Explanation:

\displaystyle \begin{align*}&\text{In order to multiply two vectors, }A\times b\text{, the respective dimensions of each}\\&\text{must be of the form }1\times n\text{ and }n\times 1\\&\text{Note that order does matter:}\\&(A\times b \neq b \times A)\\&\text{Since A has dimensions: }1\times6\\&\text{and B has dimensions: }6\times1\\&\text{The two vectors can be multiplied:}\\&\begin{bmatrix}-18&12&-11&4&-19&13\end{bmatrix}\times\begin{bmatrix}-6\\-2\\-17\\-20\\-8\\10\end{bmatrix}\\&(-18)(-6)+(12)(-2)+(-11)(-17)+(4)(-20)+(-19)(-8)+(13)(10)\\&473\end{align*}

Example Question #3 : Vector Vector Product

\displaystyle \begin{align*}&\text{Find the vector product }\\&\begin{bmatrix}-7&-6\end{bmatrix}\times\begin{bmatrix}11\\-9\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \text{The multiplication cannot be performed.}

\displaystyle -86

\displaystyle -23

\displaystyle -47

Correct answer:

\displaystyle -23

Explanation:

\displaystyle \begin{align*}&\text{In order to multiply two vectors, }A\times b\text{, the respective dimensions of each}\\&\text{must be of the form }1\times n\text{ and }n\times 1\\&\text{Note that order does matter:}\\&(A\times b \neq b \times A)\\&\text{Since our vectors have dimensions: }1\times2\text{ and }2\times1\\&\text{The two can be multiplied to find a product:}\\&\begin{bmatrix}-7&-6\end{bmatrix}\times\begin{bmatrix}11\\-9\end{bmatrix}\\&(-7)(11)+(-6)(-9)\\&-23\end{align*}

Example Question #135 : Matrices

\displaystyle \begin{align*}&\text{Find the product }A\times B \\&\text{Where }A=\begin{bmatrix}18&-15&10&-15&-14&11\end{bmatrix}\text{ and }B=\begin{bmatrix}6\\-5\\-13\\9\\10\\-8\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle -341

\displaystyle \text{The multiplication cannot be performed.}

\displaystyle -310

\displaystyle -373

Correct answer:

\displaystyle -310

Explanation:

\displaystyle \begin{align*}&\text{In order to multiply two vectors, }A\times b\text{, the respective dimensions of each}\\&\text{must be of the form }1\times n\text{ and }n\times 1\\&\text{Note that order does matter:}\\&(A\times b \neq b \times A)\\&\text{Since A has dimensions: }1\times6\\&\text{and B has dimensions: }6\times1\\&\text{The two vectors can be multiplied:}\\&\begin{bmatrix}18&-15&10&-15&-14&11\end{bmatrix}\times\begin{bmatrix}6\\-5\\-13\\9\\10\\-8\end{bmatrix}\\&(18)(6)+(-15)(-5)+(10)(-13)+(-15)(9)+(-14)(10)+(11)(-8)\\&-310\end{align*}

Example Question #136 : Matrices

\displaystyle \begin{align*}&\text{Find the value of }C\text{ if }C=A\times B \\&\text{Where }A=\begin{bmatrix}16&-1&6&-20\end{bmatrix}\text{ and }B=\begin{bmatrix}10\\19\\-19\\1\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle 7

\displaystyle \text{The multiplication cannot be performed.}

\displaystyle 27

\displaystyle -54

Correct answer:

\displaystyle 7

Explanation:

\displaystyle \begin{align*}&\text{In order to multiply two vectors, }A\times b\text{, the respective dimensions of each}\\&\text{must be of the form }1\times n\text{ and }n\times 1\\&\text{Note that order does matter:}\\&(A\times b \neq b \times A)\\&\text{Since A has dimensions: }1\times4\\&\text{and B has dimensions: }4\times1\\&\text{It is possible to find a value for }C:\\&C=\begin{bmatrix}16&-1&6&-20\end{bmatrix}\times\begin{bmatrix}10\\19\\-19\\1\end{bmatrix}\\&C=(16)(10)+(-1)(19)+(6)(-19)+(-20)(1)\\&C=7\end{align*}

Example Question #137 : Matrices

\displaystyle \begin{align*}&\text{Find the product }A\times B \\&\text{Where }A=\begin{bmatrix}13&8\end{bmatrix}\text{ and }B=\begin{bmatrix}-12\\7\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \text{The multiplication cannot be performed.}

\displaystyle -100

\displaystyle -141

\displaystyle -26

Correct answer:

\displaystyle -100

Explanation:

\displaystyle \begin{align*}&\text{In order to multiply two vectors, }A\times b\text{, the respective dimensions of each}\\&\text{must be of the form }1\times n\text{ and }n\times 1\\&\text{Note that order does matter:}\\&(A\times b \neq b \times A)\\&\text{Since A has dimensions: }1\times2\\&\text{and B has dimensions: }2\times1\\&\text{The two vectors can be multiplied:}\\&\begin{bmatrix}13&8\end{bmatrix}\times\begin{bmatrix}-12\\7\end{bmatrix}\\&(13)(-12)+(8)(7)\\&-100\end{align*}

Example Question #138 : Matrices

\displaystyle \begin{align*}&\text{Find the vector product }\\&\begin{bmatrix}-11&19&13&15&-18&6\end{bmatrix}\times\begin{bmatrix}3\\-14\\9\\-15\\-16\\10\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle -113

\displaystyle -59

\displaystyle \text{The multiplication cannot be performed.}

\displaystyle -99

Correct answer:

\displaystyle -59

Explanation:

\displaystyle \begin{align*}&\text{In order to multiply two vectors, }A\times b\text{, the respective dimensions of each}\\&\text{must be of the form }1\times n\text{ and }n\times 1\\&\text{Note that order does matter:}\\&(A\times b \neq b \times A)\\&\text{Since our vectors have dimensions: }1\times6\text{ and }6\times1\\&\text{The two can be multiplied to find a product:}\\&\begin{bmatrix}-11&19&13&15&-18&6\end{bmatrix}\times\begin{bmatrix}3\\-14\\9\\-15\\-16\\10\end{bmatrix}\\&(-11)(3)+(19)(-14)+(13)(9)+(15)(-15)+(-18)(-16)+(6)(10)\\&-59\end{align*}

Learning Tools by Varsity Tutors