MAP 5th Grade Math : MAP 5th Grade Math

Study concepts, example questions & explanations for MAP 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Operations And Algebraic Thinking

Complete the table below using the equation \(\displaystyle y=10x+4\)

Screen shot 2015 07 27 at 8.52.55 am

Possible Answers:

\(\displaystyle 172\)

\(\displaystyle 162\)

\(\displaystyle 164\)

\(\displaystyle 174\)

Correct answer:

\(\displaystyle 164\)

Explanation:

We need to use both the equation and the table to answer this question. We are looking for the corresponding \(\displaystyle y\) value for \(\displaystyle x=16\). We can plug \(\displaystyle 16\) into the \(\displaystyle x\) in our equation to solve for \(\displaystyle y\).

\(\displaystyle y=10(16)+4\)

\(\displaystyle y=160+4\)

\(\displaystyle y=164\)

Example Question #2 : Operations And Algebraic Thinking

Sally drank \(\displaystyle \frac{1}{12}\) of the milk and Sam drank \(\displaystyle \frac{2}{3}\). What fraction of the milk did they drink? 

Possible Answers:

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{5}{7}\)

\(\displaystyle \frac{3}{4}\)

\(\displaystyle \frac{3}{15}\)

Correct answer:

\(\displaystyle \frac{3}{4}\)

Explanation:

\(\displaystyle \frac{1}{12}+\frac{2}{3}\)

In order to solve this problem, we first need to make common denominators. 

\(\displaystyle \frac{2}{3}\times\frac{4}{4}=\frac{8}{12}\)

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\(\displaystyle \frac{1}{12}+\frac{8}{12}=\frac{9}{12}\)

\(\displaystyle \frac{9}{12}\) can be reduced by dividing \(\displaystyle 3\) by both sides. 

\(\displaystyle \frac{9}{12}\div \frac{3}{3}=\frac{3}{4}\)

Example Question #3 : Operations And Algebraic Thinking

David ate \(\displaystyle \frac{3}{12}\) of the pizza and Alison ate \(\displaystyle \frac{1}{3}\) of the pizza. How much of the pizza did they eat? 

Possible Answers:

\(\displaystyle \frac{4}{15}\)

\(\displaystyle \frac{6}{12}\)

\(\displaystyle \frac{7}{12}\)

\(\displaystyle \frac{1}{2}\)

Correct answer:

\(\displaystyle \frac{7}{12}\)

Explanation:

\(\displaystyle \frac{3}{12}+\frac{1}{3}\)

In order to solve this problem, we first need to make common denominators. 

\(\displaystyle \frac{1}{3}\times\frac{4}{4}=\frac{4}{12}\)

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\(\displaystyle \frac{3}{12}+\frac{4}{12}=\frac{7}{12}\)

Example Question #1 : Numbers And Operations

Round \(\displaystyle 427.127\) to the nearest tenth.

Possible Answers:

\(\displaystyle 427.13\)

\(\displaystyle 427.1\)

\(\displaystyle 430\)

\(\displaystyle 427.2\)

Correct answer:

\(\displaystyle 427.1\)

Explanation:

When we round a number to the nearest tenth we look to the hundredths place to tell us if we round up or down.

\(\displaystyle 427.1{\color{Blue} 2}7\)

If the number in our hundredths place is \(\displaystyle 5\) or greater, we round up. If the number in the hundredths place is \(\displaystyle 4\) or less, we round down. When we round up, the number in the hundredths place increases by \(\displaystyle 1\) and all the other numbers to the right become \(\displaystyle 0\). When we round down, the number in the hundredths place stays the same and all the other numbers to the right become \(\displaystyle 0\).

In this case, \(\displaystyle 2\) is less than \(\displaystyle 5\) so our rounded number is \(\displaystyle 427.100\) or \(\displaystyle 427.1\)

Example Question #2 : Numbers And Operations

Fill in the blank with the correct sign. 

\(\displaystyle \small 4\) __________ \(\displaystyle \small \small 4\times\frac{1}{4}\)

Possible Answers:

\(\displaystyle < \)

\(\displaystyle >\)

\(\displaystyle =\)

Correct answer:

\(\displaystyle >\)

Explanation:

\(\displaystyle \small 4\) __________ \(\displaystyle \small \small 4\times\frac{1}{4}\)

When we multiply a fraction by a whole number, we first want to make the whole number into a fraction. We do that by putting the whole number over \(\displaystyle 1.\) Then we multiply like normal. 

\(\displaystyle \small \frac{4}{1}\times\frac{1}{4}=\frac{4}{4}\)

\(\displaystyle \small \frac{4}{4}=1\)

\(\displaystyle \small 4\) __________ \(\displaystyle \small 1\)

\(\displaystyle \small 4>1\)

Example Question #3 : Numbers And Operations

What is \(\displaystyle 9.25\) in expanded form? 

Possible Answers:

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{100}\right)+5\times\left(\frac{1}{100}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{100}\right)+5\times\left(\frac{1}{1000}\right)\)

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{100}\right)\)

Correct answer:

\(\displaystyle 9\times1+2\times\left(\frac{1}{10}\right)+5\times\left(\frac{1}{100}\right)\)

Explanation:

When we write a number in expanded form, we multiply each digit by its place value. 

\(\displaystyle 9\) is in the ones place, so we multiply by \(\displaystyle 1\)

\(\displaystyle 9\times1=9\)

\(\displaystyle 2\) is in the tenths place, so we multiply by \(\displaystyle \frac{1}{10}\)

\(\displaystyle 2\times\frac{1}{10}=.2\)

\(\displaystyle 5\) is in the hundredths place, so we multiply by \(\displaystyle \frac{1}{100}\).

\(\displaystyle 5\times\frac{1}{100}=.05\)

Then we add the products together. 

\(\displaystyle \frac{\begin{array}[b]{r}9.00\\ +\ .20\\ .05 \end{array}}{ \ \ \space9.25}\)

Example Question #1 : Geometry

What coordinate point is the green triangle on? 


Screen shot 2015 07 29 at 4.25.25 pm

Possible Answers:

\(\displaystyle (14,3)\)

\(\displaystyle (21,9)\)

\(\displaystyle (17,18)\)

\(\displaystyle (15,6)\)

Correct answer:

\(\displaystyle (21,9)\)

Explanation:

To find the location on a coordinate plane we first look at the \(\displaystyle x\)-axis, which runs horizontal and then the \(\displaystyle y\)-axis, which runs vertical. We write the point on the \(\displaystyle x\)-axis first, followed by the point on the \(\displaystyle y\)-axis. \(\displaystyle (x,y)\)

The green triangle is over \(\displaystyle 21\) on the \(\displaystyle x\)-axis and up \(\displaystyle 9\) on the \(\displaystyle y\)-axis. 

Example Question #1 : Geometry

Starting at the coordinate point shown below, if you move up \(\displaystyle 10\) and to the right \(\displaystyle 9\), what is your new point? 

Screen shot 2015 07 30 at 8.51.14 am

Possible Answers:

\(\displaystyle (12,12)\)

\(\displaystyle (13,13)\)

\(\displaystyle (14,14)\)

\(\displaystyle (15,15)\)

Correct answer:

\(\displaystyle (12,12)\)

Explanation:

The starting point is at \(\displaystyle (3,2)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving up \(\displaystyle 10\), we can add \(\displaystyle 10\) to our \(\displaystyle y\) coordinate point and because we are moving to the right \(\displaystyle 9\) we can add \(\displaystyle 9\) to our \(\displaystyle x\)coordinate point. 

\(\displaystyle 2+10=12\)

\(\displaystyle 3+9=12\)

\(\displaystyle (12,12)\)

Example Question #2 : Geometry

What other shape can a parallelogram be classified as? 

Possible Answers:

Square

Rectangle

Quadrilateral 

Triangle 

Correct answer:

Quadrilateral 

Explanation:

A parallelogram can not be classified as a square because a square has to have \(\displaystyle 4\) equal sides, but a parallelogram can have two different side lengths, as long as the opposite side lengths are equal. 

A parallelogram can not be classified as a rectangle because a rectangle has to have \(\displaystyle 90^{\circ}\) angles, and a parallelogram does not. 

A parallelogram can not be classified as a triangle because a parallelogram has to have \(\displaystyle 4\) sides and a triangle only has \(\displaystyle 3\) sides. 

A parallelogram has four sides, and all shapes with four sides are quadrilaterals. 

Example Question #1 : Map 5th Grade Math

How many \(\displaystyle feet\) are in \(\displaystyle 72\ inches?\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 6\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ foot=12\ inches\), and we can use \(\displaystyle x\) has our unknown. 

\(\displaystyle \frac{1\ foot}{12\ inches}=\frac{x\ feet}{72\ inches}\)

Next, we want to cross multiply and divide to isolate the \(\displaystyle x\) on one side. 

\(\displaystyle 12\ inches\times x\ feet= 1\ foot \times 72\ inches\)

\(\displaystyle 6\ feet= \frac{1\ foot \times 72\ inches}{12\ inches}\)

The \(\displaystyle \yards\)\(\displaystyle \ inches\) will cancel and we are left with \(\displaystyle 6\ feet\)

Learning Tools by Varsity Tutors