Pre-Algebra : Area of a Circle

Study concepts, example questions & explanations for Pre-Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #111 : Geometry

A circle has a circumference of \displaystyle \small 6\pi. What is its area?

Possible Answers:

\displaystyle \small 12\pi

\displaystyle \small 9\pi

\displaystyle \small 6\pi

\displaystyle \small 18\pi

\displaystyle \small 36\pi

Correct answer:

\displaystyle \small 9\pi

Explanation:

To begin, we need to find the radius of the circle. The circumference of a circle is given as follows:

\displaystyle \small C = 2\pi r,

where \displaystyle r is the radius.

Then, a circle with circumference \displaystyle 6\pi will have the following radius:

\displaystyle 6\pi = 2\pi r

\displaystyle \small \frac{6\pi}{2\pi}=\frac{2\pi r}{2\pi}

\displaystyle \small 3=r

Using the radius, we can now solve for the area:

\displaystyle \small A=\pi r^2

\displaystyle A=\pi(3)^2

\displaystyle \small A=9\pi

The area of the circle is \displaystyle \small 9\pi.

Example Question #112 : Geometry

What is the area of a circle with a diameter equal to \displaystyle 7?

Possible Answers:

\displaystyle 49\pi

\displaystyle 24.5\pi

\displaystyle 98\pi

\displaystyle 12.25\pi

Correct answer:

\displaystyle 12.25\pi

Explanation:

If the diameter is 7, then the radius is half of 7, or 3.5.

Plug this value for the radius into the equation for the area of a circle:

\displaystyle A=r^2\pi=(3.5)^2\pi=12.25\pi

Example Question #1 : Area Of A Circle

Untitled_1

The rectangle in the above figure has length 20 and height 10. What is the area of the orange region?

Possible Answers:

Insufficient information is given to determine the area.

\displaystyle 200 + \frac{25}{2} \pi

\displaystyle 200 + 100 \pi

\displaystyle 200 + 25 \pi

\displaystyle 200 + 50 \pi

Correct answer:

\displaystyle 200 + \frac{25}{2} \pi

Explanation:

The orange region is a composite of two figures:

One is a rectangle measuring 20 by 10, which, subsequently, has area

\displaystyle 20 \cdot 10 = 200.

The other is a semicircle with diameter 10, and, subsequently, radius 5. Its area is 

\displaystyle \frac{1}{2} \pi \cdot 5^{2} = \frac{25}{2} \pi.

Add the areas:

\displaystyle A = 200 + \frac{25}{2} \pi

Example Question #2 : Area Of A Circle

A circle has a diameter of \displaystyle 10 inches. What is the area of the circle? Round to the nearest tenth decimal place.

Possible Answers:

Correct answer:

Explanation:

The formula to find the area of a circle is \displaystyle A=\pi\cdot r^2.

First you must find the radius from the diameter.

\displaystyle r=\frac{1}{2}d \rightarrow r=\frac{1}{2}\cdot 10=5

In this case it is, 

\displaystyle A=5^2 \cdot \pi = 25\cdot 3.14= 78.5

Example Question #121 : Area

What is the area of a circle that has a diameter of \displaystyle 15 inches?

Possible Answers:

\displaystyle 153.938

\displaystyle 960

\displaystyle 940

\displaystyle 960

\displaystyle 176.7146

\displaystyle 153.938

\displaystyle 940

\displaystyle 706.8583

Correct answer:

\displaystyle 176.7146

Explanation:

The formula for finding the area of a circle is \displaystyle \pi r^{2}. In this formula, \displaystyle r represents the radius of the circle.  Since the question only gives us the measurement of the diameter of the circle, we must calculate the radius.  In order to do this, we divide the diameter by \displaystyle 2.

\displaystyle \frac{15}{2}=7.5

Now we use \displaystyle 7.5 for \displaystyle r in our equation.

\displaystyle \pi (7.5)^{2}=176.7146 \: in^{2}

 

Example Question #1 : Area Of A Circle

What is the area of a circle with a diameter equal to 6?

Possible Answers:

\displaystyle 9\pi

\displaystyle 18\pi

\displaystyle 36\pi

\displaystyle 3\pi

Correct answer:

\displaystyle 9\pi

Explanation:

First, solve for radius:

\displaystyle r=\frac{d}{2}=\frac{6}{2}=3

Then, solve for area:

\displaystyle A=r^2\pi=3^2\pi=9\pi

Example Question #1 : Know And Use The Formulas For The Area And Circumference Of A Circle: Ccss.Math.Content.7.G.B.4

The diameter of a circle is \displaystyle 4\ cm. Give the area of the circle.

 

 

Possible Answers:

\displaystyle 13.56\ cm^2

\displaystyle 13\ cm^2

\displaystyle 12 \ cm^2

\displaystyle 12.56\ cm^2

\displaystyle 11.56\ cm^2

Correct answer:

\displaystyle 12.56\ cm^2

Explanation:

The area of a circle can be calculated using the formula:

\displaystyle Area=\frac{\pi d^2}{4},

where \displaystyle d is the diameter of the circle, and \displaystyle \pi is approximately \displaystyle 3.14.

\displaystyle Area=\frac{\pi d^2}{4}=\frac{\pi\times 4^2}{4}=4\pi \Rightarrow Area\approx 4\times 3.14\Rightarrow Area\approx 12.56 \ cm^2

Example Question #111 : Geometry

The diameter of a circle is \displaystyle 4t. Give the area of the circle in terms of \displaystyle t.

Possible Answers:

\displaystyle 12 t^2

\displaystyle 12.56 t

\displaystyle 12.56 t^2

\displaystyle 11.56 t

\displaystyle 11.56 t^2

Correct answer:

\displaystyle 12.56 t^2

Explanation:

The area of a circle can be calculated using the formula:

\displaystyle Area=\frac{\pi d^2}{4},

where \displaystyle d  is the diameter of the circle and \displaystyle \pi is approximately \displaystyle 3.14.

\displaystyle Area=\frac{\pi (4t)^2}{4}=\frac{16\pi t^2}{4}=4\pi t^2 \Rightarrow Area\approx 4\times 3.14\times t^2

\displaystyle \Rightarrow Area\approx 12.56t^2

Example Question #171 : Plane Geometry

The circumference of a circle is \displaystyle 12.56 inches. Find the area of the circle.

Let \displaystyle \pi = 3.14.

Possible Answers:

\displaystyle 11.56\ in^2

\displaystyle 13.56\ in^2

\displaystyle 12.56\ in^2

\displaystyle 11\ in^2

\displaystyle 12\ in^2

Correct answer:

\displaystyle 12.56\ in^2

Explanation:

First we need to find the radius of the circle. The circumference of a circle is \displaystyle Circumference =2\pi r, where \displaystyle r is the radius of the circle. 

\displaystyle 12.56=2\times 3.14\times r\Rightarrow r=2\ in 

The area of a circle is \displaystyle Area=\pi r^2 where \displaystyle r  is the radius of the circle.

\displaystyle Area=\pi r^2=3.14\times 2^2=12.56\ in^2

Example Question #6 : Area Of A Circle

Find the area of a circle that has a radius of \displaystyle 4.

Possible Answers:

\displaystyle 4\pi

\displaystyle 12\pi

\displaystyle 16\pi

\displaystyle 8\pi

Correct answer:

\displaystyle 16\pi

Explanation:

Use the formula:

\displaystyle \text{Area}=\pi\times r^2

Where \displaystyle r corresponds to the circle's radius.

Since \displaystyle r=4:

\displaystyle \text{Area}=\pi\times(4^2)

\displaystyle \text{Area}=16\pi

Learning Tools by Varsity Tutors