Precalculus : Fundamental Trigonometric Identities

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Fundamental Trigonometric Identities

Simplify \(\displaystyle 3sin^2\theta-3\).

Possible Answers:

\(\displaystyle 3cos^2\theta\)

\(\displaystyle -3tan\theta\)

\(\displaystyle 3\)

\(\displaystyle -3cos^2\theta\)

\(\displaystyle 3-3cos^2\theta\)

Correct answer:

\(\displaystyle -3cos^2\theta\)

Explanation:

Write the Pythagorean Identity.

\(\displaystyle sin^2\theta+cos^2\theta=1\)

Reorganize the left side of this equation so that it matches the form:   \(\displaystyle 3sin^2\theta-3\)

Subtract cosine squared theta on both sides.

\(\displaystyle sin^2\theta-1=-cos^2\theta\)

Multiply both sides by 3.

\(\displaystyle 3(sin^2\theta-1=-cos^2\theta)\)

\(\displaystyle 3sin^2\theta-3=-3cos^2\theta\)

Example Question #1 : Fundamental Trigonometric Identities

Which of the following statements is false?

Possible Answers:

 \(\displaystyle sin(x)cos(x)tan(x) = \frac{1}{cot(-x)sec(-x)csc(-x)}\)

\(\displaystyle tan x + tan(-x) = 0\)

\(\displaystyle csc x tan(-2x) = csc (-x) tan 2x\)

\(\displaystyle sec(-x^2) = -sec(x^2)\)

\(\displaystyle sin x + cos x = -sin(-x) + cos (-x)\)

Correct answer:

\(\displaystyle sec(-x^2) = -sec(x^2)\)

Explanation:

Of the six trigonometric functions, four are odd, meaning \(\displaystyle f(-x) = -f(x)\). These four are:

  • sin x
  • tan x
  • cot x
  • csc x

That leaves two functions which are even, which means that \(\displaystyle f(-x) = f(x)\). These are:

  • cos x
  • sec x

Of the aforementioned, only \(\displaystyle sec(-x^2) = -sec(-x^2)\) is incorrect, since secant is an even function, which implies that \(\displaystyle sec(-x^2) = sec(x^2)\)

Example Question #2 : Fundamental Trigonometric Identities

Find the value of \(\displaystyle \sin(-15^\circ)\).

Possible Answers:

\(\displaystyle \frac{-\sqrt6 -\sqrt2}{4}\)

\(\displaystyle \frac{\sqrt2 -\sqrt6}{4}\)

\(\displaystyle \frac{\sqrt6 -\sqrt2}{4}\)

\(\displaystyle \frac{\sqrt2+\sqrt6}{4}\)

\(\displaystyle \frac{\sqrt6 -\sqrt2}{2}\)

Correct answer:

\(\displaystyle \frac{\sqrt2 -\sqrt6}{4}\)

Explanation:

Rewrite \(\displaystyle sin(-15)\) by odd and even identities.

\(\displaystyle sin(-15)=-sin(15)\)

Use the difference identity of sine, and choose the special angles 45 and 30, since their difference equals to 15.

\(\displaystyle sin (A -B) = ( sin A )( cos B ) - ( cos A )( sin B )\)

\(\displaystyle sin (45 -30) = ( sin 45 )( cos 30) - ( cos45 )( sin 30 )\)

\(\displaystyle sin (45 -30) = (\frac{\sqrt2}{2})(\frac{\sqrt3}{2}) -(\frac{\sqrt2}{2})(\frac{1}{2})\)

\(\displaystyle sin (15) = \frac{\sqrt6}{4} -\frac{\sqrt2}{4}\)

\(\displaystyle -sin(15)=-(\frac{\sqrt6}{4} -\frac{\sqrt2}{4})=\frac{\sqrt2}{4} -\frac{\sqrt6}{4}\)

Example Question #3 : Fundamental Trigonometric Identities

Simplify:  \(\displaystyle sin(-30)+cos(-30)\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle \frac{\sqrt3+1}{2}\)

\(\displaystyle -\frac{1}{2}\)

\(\displaystyle \frac{\sqrt3-1}{2}\)

\(\displaystyle \frac{\sqrt3-1}{3}\)

Correct answer:

\(\displaystyle \frac{\sqrt3-1}{2}\)

Explanation:

Write the even and odd identities for sine and cosine.

\(\displaystyle sin(-x)=-sin(x)\)

\(\displaystyle cos(-x)=cos(x)\)

Rewrite the expression \(\displaystyle sin(-30)+cos(-30)\) and evaluate.

\(\displaystyle -sin(30)+cos(30) =-\frac{1}{2}+\frac{\sqrt3}{2}= \frac{\sqrt3-1}{2}\)

Example Question #4 : Fundamental Trigonometric Identities

Simplify:  \(\displaystyle sec(-45)-sec(-45)\)

Possible Answers:

\(\displaystyle \frac{\sqrt2}{2}\)

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

In order to simplify \(\displaystyle sec(-45)-sec(-45)\), rewrite the expression after applying the rule of odd-even identities for the secant function.

\(\displaystyle sec(-x)=sec(x)\)

\(\displaystyle sec(-45)-sec(-45)=sec(45)-sec(45)=0\)

Example Question #6 : Fundamental Trigonometric Identities

Which of the following is equivalent to the expression:

\(\displaystyle cot(-\Theta )\)

Possible Answers:

\(\displaystyle \frac{sin{\Theta}}{cos(-\Theta)}\)

\(\displaystyle \frac{cos(-\Theta)}{sin(\Theta)}\)

\(\displaystyle \frac{sin{\Theta}}{cos(\Theta)}\)

\(\displaystyle \frac{-cos(\Theta)}{sin(\Theta)}\)

Correct answer:

\(\displaystyle \frac{-cos(\Theta)}{sin(\Theta)}\)

Explanation:

Which of the following is equivalent to the expression:

\(\displaystyle cot(-\Theta )\)

Begin by recalling the following identity:

\(\displaystyle cot(-\Theta )=-cot(\Theta)\)

Next, recall the relationship between cotangent and tangent:

\(\displaystyle cot(\Theta)=\frac{1}{tan(\Theta)}\)

As well as the relationship between tangent, sine and cosine

\(\displaystyle Tan(\Theta)=\frac{sin{\Theta}}{cos(\Theta)}\)

So to put it all together, we can pull out the negative sign from our original expression:

\(\displaystyle cot(-\Theta )=-cot(\Theta)\)

Next, we can rewrite our cotangent as tangent

\(\displaystyle -cot(\Theta)=\frac{-1}{tan(\Theta)}\)

Finally, we can change our tangent to sine and cosine, but because we are dealing with the reciprocal of tangent, we will need the reciprocal of our identity.

\(\displaystyle -cot(\Theta)=\frac{-1}{tan(\Theta)}=\frac{-cos(\Theta)}{sin(\Theta)}\)

Making our answer:

\(\displaystyle \frac{-cos(\Theta)}{sin(\Theta)}\)

Beware trap answer:

\(\displaystyle \frac{cos(-\Theta)}{sin(\Theta)}\)

This may look good on the surface, but recall

\(\displaystyle cos(-\Theta)\neq -cos(\Theta),cos(-\Theta)=cos(\Theta)\)

Example Question #1481 : Pre Calculus

Simplify:  

\(\displaystyle \frac{2}{csc(2t)}\)

Possible Answers:

\(\displaystyle 4cos(\theta)sin(\theta)\)

\(\displaystyle 2cos(\theta)-2sin(\theta)\)

\(\displaystyle 4sin(\theta)\)

\(\displaystyle \frac{cos(\theta)sin(\theta)}{4}\)

\(\displaystyle 2sin(\theta)\)

Correct answer:

\(\displaystyle 4cos(\theta)sin(\theta)\)

Explanation:

Write the reciprocal identity for cosecant.

\(\displaystyle csc(\theta)= \frac{1}{sin(\theta)}\)

Rewrite the expression and use the double angle identities for sine to simplify.

\(\displaystyle \\\frac{2}{csc(2t)}\\ \\= \frac{2}{\frac{1}{sin(2\theta)}}\\ \\= 2sin(2\theta) \\ \\= 2(2sin(\theta)cos(\theta))\)

\(\displaystyle =4cos(\theta)sin(\theta)\)

Example Question #2 : Fundamental Trigonometric Identities

Determine which of the following is equivalent to \(\displaystyle 2sec(10x)\).

Possible Answers:

\(\displaystyle sec(20x)\)

\(\displaystyle \frac{2}{cos(10x)}\)

\(\displaystyle 2cos(20x)\)

\(\displaystyle \frac{2}{cos(20x)}\)

\(\displaystyle sec(5x)\)

Correct answer:

\(\displaystyle \frac{2}{cos(10x)}\)

Explanation:

Rewirte \(\displaystyle 2sec(10x)\) using the reciprocal identity of cosine.

\(\displaystyle sec(\theta)=\frac{1}{cos(\theta)}\)

\(\displaystyle \\2sec(10x)\\ \\=2\left(\frac{1}{cos(10x)}\right)\\ \\= \frac{2}{cos(10x)}\)

Example Question #6 : Fundamental Trigonometric Identities

Which of the following is similar to 

\(\displaystyle \frac{3}{csc(\theta)}\)?

Possible Answers:

\(\displaystyle \frac{sin(\theta)}{3}\)

\(\displaystyle \frac{3}{sin(\theta)}\)

\(\displaystyle 3cos(\theta)\)

\(\displaystyle 3sin(\theta)\)

\(\displaystyle sin(3\theta)\)

Correct answer:

\(\displaystyle 3sin(\theta)\)

Explanation:

Write the reciprocal/ratio identity for cosecant.

\(\displaystyle csc(\theta)=\frac{1}{sin(\theta)}\)

Replace cosecant with sine.

\(\displaystyle \frac{3}{csc(\theta)}=\frac{3}{\frac{1}{sin(\theta)}}= 3sin(\theta)\)

Example Question #2 : Fundamental Trigonometric Identities

Evaluate:  

\(\displaystyle \frac{sec(\theta)}{tan(\theta)}-\frac{tan(\theta)}{sec(\theta)}\)

Possible Answers:

\(\displaystyle \frac{1-sin(\theta)}{sin(\theta)}\)

\(\displaystyle \frac{cos(\theta)-sin(\theta)}{cos^2(\theta)}\)

\(\displaystyle \frac{cos(\theta)+sin(\theta)}{sin(\theta)}\)

\(\displaystyle \frac{1+sin(\theta)}{sin(\theta)}\)

\(\displaystyle \frac{cos^2(\theta)}{sin(\theta)}\)

Correct answer:

\(\displaystyle \frac{cos^2(\theta)}{sin(\theta)}\)

Explanation:

Rewrite \(\displaystyle \frac{sec(\theta)}{tan(\theta)}-\frac{tan(\theta)}{sec(\theta)}\) in terms of sine and cosine.

\(\displaystyle \frac{sec(\theta)}{tan(\theta)}-\frac{tan(\theta)}{sec(\theta)}= \frac{1}{cos(\theta)}\div\frac{sin(\theta)}{cos(\theta)}-\frac{sin(\theta)}{cos(\theta)}\div \frac{1}{cos(\theta)}\)

Dividing fractions is the same as multiplying the numerator by the reciprocal of the denominator.

\(\displaystyle \frac{1}{cos(\theta)}\times\frac{cos(\theta)}{sin(\theta)}-\frac{sin(\theta)}{cos(\theta)}\times cos(\theta)=\frac{1}{sin(\theta)}-sin(\theta)\)

Multiply the second term by sine to get a common denominator. Then after subtracting the second term from the first you can see that a Pythagorean Identity is in the numerator.

Reducing further we arrive at the final answer.

\(\displaystyle \frac{1}{sin(\theta)}-sin(\theta)=\frac{1-sin^2(\theta)}{sin(\theta)}=\frac{cos^2(\theta)}{sin(\theta)}\)

Learning Tools by Varsity Tutors