SAT II Math II : Trigonometry

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Trigonometry

The area of a regular pentagon is 1,000. Give its perimeter to the nearest whole number.

Possible Answers:

\displaystyle 121

\displaystyle 118

\displaystyle 199

\displaystyle 91

\displaystyle 107

Correct answer:

\displaystyle 121

Explanation:

A regular pentagon can be divided into ten congruent triangles by its five radii and its five apothems. Each triangle has the following shape:

 Thingy_1

 

The area of one such triangle is \displaystyle \frac{1}{2}ab, so the area of the entire pentagon is ten times this, or \displaystyle 10 \cdot \frac{1}{2}ab = 5ab.

The area of the pentagon is 1,000, so

\displaystyle 5ab = 1,000

\displaystyle ab = 200

Also,

\displaystyle \frac{a}{b} = \tan 54^{\circ }, or equivalently, \displaystyle a=b \tan 54^{\circ }, so we solve for \displaystyle b in the equation:

\displaystyle b \tan 54^{ \circ } \cdot b = 200

\displaystyle b^{2} \tan 54^{ \circ } = 200

\displaystyle b^{2} = \frac{200}{\tan 54^{ \circ }} \approx \frac{200}{ 1.3764} \approx 145.3

\displaystyle b \approx \sqrt{145.3} \approx 12.1

The perimeter is ten times this, or 121.

Example Question #1 : Trigonometry

The area of a regular dodecagon (twelve-sided polygon) is 600. Give its perimeter to the nearest whole number.

Possible Answers:

\displaystyle 129

\displaystyle 102

\displaystyle 88

\displaystyle 62

\displaystyle 147

Correct answer:

\displaystyle 88

Explanation:

A regular dodecagon can be divided into twenty-four congruent triangles by its twelve radii and its twelve apothems, each of which is shaped as shown:

 

 Thingy_2

The area of one such triangle is \displaystyle \frac{1}{2}ab, so the area of the entire dodecagon is twenty-four times this, or 

\displaystyle 24 \cdot \frac{1}{2}ab = 12ab.

The area of the dodecagon is 600, so

\displaystyle 12ab = 600, or

\displaystyle ab = 50.

Also,

\displaystyle \frac{a}{b} = \tan 75^{\circ }, or equivalently, \displaystyle a=b \tan 75^{\circ }, so solve for \displaystyle b in the equation

\displaystyle b \tan 75^{ \circ } \cdot b =50

Solve for \displaystyle b:

\displaystyle b^{2} \cdot \tan 75^{ \circ } = 50

\displaystyle b^{2} = \frac{50}{ \tan 75^{ \circ }} \approx \frac{50}{ 3.7321} \approx 13.4

\displaystyle b \approx \sqrt{13.4} \approx 3.66

The perimeter is twenty-four times this:

\displaystyle P \approx 3.66 \cdot 24 \approx 88

Example Question #1 : Trigonometry

The area of a regular nonagon (nine-sided polygon) is 900. Give its perimeter to the nearest whole number.

Possible Answers:

\displaystyle 93

\displaystyle 76

\displaystyle 165

\displaystyle 109

\displaystyle 137

Correct answer:

\displaystyle 109

Explanation:

A regular nonagon can be divided into eighteen congruent triangles by its nine radii and its nine apothems, each of which is shaped as shown:

 

 Thingy_1

The area of one such triangle is \displaystyle \frac{1}{2}ab, so the area of the entire nonagon is eighteen times this, or \displaystyle 18 \cdot \frac{1}{2}ab = 9ab. Since the area is 900,

\displaystyle 9ab = 900, or

\displaystyle ab= 100.

Also,

\displaystyle \frac{a}{b} = \tan 70^{\circ }, or equivalently, \displaystyle a=b \tan 70^{\circ }, so solve for \displaystyle b in the equation

\displaystyle b \tan 70^{\circ } \cdot b= 100

\displaystyle b ^{2} \cdot \tan 70^{\circ } = 100

\displaystyle b ^{2} = \frac{100}{\tan 70^{\circ } } \approx \frac{100}{ 2.7475 } \approx 36.40

\displaystyle b \approx \sqrt{36.40} \approx 6.03

The perimeter of the nonagon is eighteen times this:

\displaystyle 18 \cdot 6.03 \approx 109, the correct response.

 

Example Question #2 : Trigonometry

nonagon is a nine-sided polygon.

Nonagon \displaystyle ABCDEFGHI has diagonal \displaystyle \overline{AC} with length 10. To the nearest tenth, give the length of one side.

Possible Answers:

\displaystyle 6.2

\displaystyle 5.3

\displaystyle 8.3

\displaystyle 8.7

\displaystyle 5.9

Correct answer:

\displaystyle 5.3

Explanation:

Construct the nonagon with diagonal \displaystyle \overline{AC}.

We will concern ourselves with finding the length of \displaystyle \overline{BC}.

Since \displaystyle m \angle ABC = \frac{(9-2)\cdot 180^{ \circ}}{9}= 140 ^{ \circ}, and \displaystyle \Delta ABC is isosceles, then  

\displaystyle m \angle BAC = \frac{1}{2} (180^{\circ } - 140^{\circ }) = 20^{\circ }

The following diagram is formed (limiiting ourselves to \displaystyle \Delta ABC):

 Decagon

By the Law of Sines,

\displaystyle \frac{BC}{\sin \left (m \angle BAC \right )} = \frac{AC} {\sin \left (m \angle ABC \right )}

\displaystyle \frac{BC}{\sin 20^{\circ }} = \frac{10} {\sin 140^{\circ }}

\displaystyle BC= \frac{10\sin 20^{\circ }} {\sin 140^{\circ }}

\displaystyle BC\approx \frac{10\cdot 0.3420} {0.6428}

\displaystyle BC \approx 5.3

Example Question #3 : Trigonometry

Give the length of one side of a regular pentagon whose diagonals measure 10 each. (Nearest tenth)

Possible Answers:

\displaystyle 5.4

\displaystyle 5.8

\displaystyle 6.2

\displaystyle 8.5

\displaystyle 7.3

Correct answer:

\displaystyle 6.2

Explanation:

Construct the pentagon with diagonal \displaystyle \overline{AC}.

We will concern ourselves with finding the length of \displaystyle \overline{BC}.

Since \displaystyle m \angle ABC = \frac{(5-2)\cdot 180^{ \circ}}{5}= 108 ^{ \circ}, and \displaystyle \Delta ABC is isosceles, then  

\displaystyle m \angle BAC = \frac{1}{2} (180^{\circ } - 108^{\circ }) = 36^{\circ }

The following diagram is formed:

Pentagon

By the Law of Sines,

\displaystyle \frac{BC}{\sin \left (m \angle BAC \right )} = \frac{AC} {\sin \left (m \angle ABC \right )}

\displaystyle \frac{BC}{\sin 36^{\circ }} = \frac{10} {\sin 108^{\circ }}

\displaystyle BC= \frac{10\sin 36^{\circ }} {\sin 108^{\circ }}

\displaystyle BC\approx \frac{10\cdot 0.5878} {0.9511}

\displaystyle BC \approx 6.2

Example Question #2 : Finding Sides With Trigonometry

In \displaystyle \bigtriangleup ABC:

\displaystyle m \angle A = 116 ^{\circ }

\displaystyle m \angle B = 20^{\circ }

\displaystyle BC = 40

Evaluate \displaystyle AC to the nearest whole unit.

Possible Answers:

\displaystyle 105

\displaystyle 86

\displaystyle 15

\displaystyle 31

\displaystyle 19

Correct answer:

\displaystyle 15

Explanation:

The Law of Sines states that given two angles of a triangle with measures \displaystyle \alpha, \beta, and their opposite sides of lengths \displaystyle a,b, respectively,

\displaystyle \frac{\sin \alpha}{a} = \frac{\sin \beta}{b},

or, equivalently,

\displaystyle \frac{b}{\sin \beta} = \frac{a}{\sin \alpha}.

\displaystyle \overline{AC }, whose length is desired, and \displaystyle \overline{BC}, whose length is given, are opposite \displaystyle \angle B and \displaystyle \angle A, respectively, so, in the sine formula, set \displaystyle b = AC\displaystyle \beta = m \angle B = 20 ^{\circ }\displaystyle a = BC = 40, and \displaystyle \alpha = m \angle A = 116^{\circ } in the Law of Sines formula, then solve for \displaystyle AC:

\displaystyle \frac{AC}{\sin 20^{\circ }} = \frac{40}{\sin 116^{\circ }}

\displaystyle \frac{AC}{\sin 20^{\circ }} \cdot \sin 20^{\circ } = \frac{40}{\sin 116^{\circ }} \cdot \sin 20^{\circ }

\displaystyle AC = \frac{40}{\sin 116^{\circ }} \cdot \sin 20^{\circ }

\displaystyle \approx \frac{40}{0.8988} \cdot 0.3420

\displaystyle \approx 15

Example Question #1 : Finding Sides With Trigonometry

Suppose the distance from a student's eyes to the floor is 4 feet.  He stares up at the top of a tree that is 20 feet away, creating a 30 degree angle of elevation. How tall is the tree?

Possible Answers:

\displaystyle \frac{20\sqrt{3}+12}{3}

\displaystyle \frac{20\sqrt{3}+4}{3}

\displaystyle 14

\displaystyle \frac{20\sqrt{3}+12}{3}

\displaystyle 10\sqrt3+4

Correct answer:

\displaystyle \frac{20\sqrt{3}+12}{3}

Explanation:

The height of the tree requires using trigonometry to solve.  The distance of the student to the tree \displaystyle (20), partial height of the tree \displaystyle (P), and the distance between the student's eyes to the top of the tree will form the right triangle.

The tangent operation will be best used for this scenario, since we have the known distance of the student to the tree, and the partial height of the tree.

Set up an equation to solve for the partial height of the tree.

\displaystyle tan(\theta) = \frac{\textup{Opposite side to angle}}{\textup{Adjacent side to angle}}

\displaystyle tan(30) = \frac{P}{20}

Multiply by 20 on both sides.

\displaystyle P=20tan(30) = 20(\frac{\sqrt{3}}{3}) = \frac{20\sqrt{3}}{3}

We will need to add this with the height of the student's eyes to the ground to get the height of the tree.

\displaystyle \frac{20\sqrt{3}}{3} + 4 = \frac{20\sqrt{3}}{3} + \frac{12}{3}

The answer is:  \displaystyle \frac{20\sqrt{3}+12}{3}

Example Question #2 : Trigonometry

decagon is a ten-sided polygon.

Decagon \displaystyle ABCDEFGHIJ has diagonal \displaystyle \overline{AC} with length 10. To the nearest tenth, give the length of one side.

Possible Answers:

\displaystyle 8.7

\displaystyle 6.2

\displaystyle 8.3

\displaystyle 5.3

\displaystyle 5.9

Correct answer:

\displaystyle 5.3

Explanation:

Construct the decagon with diagonal \displaystyle \overline{AC}.

We will concern ourselves with finding the length of \displaystyle \overline{BC}.

Since \displaystyle m \angle ABC = \frac{(10-2)\cdot 180^{ \circ}}{10}= 144 ^{ \circ}, and \displaystyle \Delta ABC is isosceles, then  

\displaystyle m \angle BAC = \frac{1}{2} (180^{\circ } - 144^{\circ }) = 18^{\circ }

The following diagram is formed (limiting ourselves to \displaystyle \Delta ABC):

 Decagon

By the Law of Sines,

\displaystyle \frac{BC}{\sin \left (m \angle BAC \right )} = \frac{AC} {\sin \left (m \angle ABC \right )}

\displaystyle \frac{BC}{\sin 18^{\circ }} = \frac{10} {\sin 144^{\circ }}

\displaystyle BC= \frac{10\sin 18^{\circ }} {\sin 144^{\circ }}

\displaystyle BC\approx \frac{10\cdot 0.3090} {0.5878}

\displaystyle BC \approx 5.3

Example Question #1 : Trigonometry

In \displaystyle \bigtriangleup ABC:

\displaystyle AB = 23

\displaystyle AC = 34

\displaystyle BC = 25

Evaluate \displaystyle m \angle A to the nearest degree.

Possible Answers:

\displaystyle 27^{\circ }

\displaystyle 47^{\circ }

\displaystyle 90^{\circ }

\displaystyle 63^{\circ }

\displaystyle 43^{\circ }

Correct answer:

\displaystyle 47^{\circ }

Explanation:

The figure referenced is below: 

Triangle z

 

 

By the Law of Cosines, the relationship of the measure of an angle \displaystyle \gamma of a triangle and the three side lengths \displaystyle a\displaystyle b, and \displaystyle c\displaystyle c the sidelength opposite the aforementioned angle, is as follows:

\displaystyle c^{2} = a ^{2} + b^{2} - 2ab \cos \gamma

All three side lengths are known, so we are solving for \displaystyle \gamma. Setting

\displaystyle c = BC = 25, the length of the side opposite the unknown angle;

\displaystyle a = AB = 23;

\displaystyle b = AC = 34;

and \displaystyle \gamma = \cos A,

We get the equation

\displaystyle 25^{2} =23^{2} +34^{2} - 2 (23) (34)\cos A

\displaystyle 625 =529+1,156- 1,564 \cos A

\displaystyle 625 =1,685 - 1,564 \cos A

Solving for \displaystyle \cos A:

\displaystyle 625 - 1,685 =1,685 - 1,564 \cos A - 1,685

\displaystyle -1.060 = - 1,564 \cos A

\displaystyle \frac{-1.060 }{- 1,564}= \frac{- 1,564 \cos A}{- 1,564}

\displaystyle \cos A \approx 0.6777

Taking the inverse cosine:

\displaystyle A = \cos ^{-1} 0.6777 \approx 47 ^{\circ },

the correct response.

Example Question #1 : Trigonometry

If \displaystyle sin(x)=0.5, what is \displaystyle sin(8x) if \displaystyle x is between \displaystyle 0 and \displaystyle 2\pi?

Possible Answers:

\displaystyle 0.5

\displaystyle -1.5

\displaystyle -\frac{\sqrt{3}}{2}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle -0.5

Correct answer:

\displaystyle -\frac{\sqrt{3}}{2}

Explanation:

Recall that \displaystyle sin(\frac{\pi}{6}) =0.5.

Therefore, we are looking for \displaystyle sin(8*\frac{\pi}{6}) or \displaystyle sin(\frac{4\pi}{3}).

Now, this has a reference angle of \displaystyle \frac{\pi}{3}, but it is in the third quadrant. This means that the value will be negative. The value of \displaystyle sin(\frac{\pi}{3}) is \displaystyle \frac{\sqrt{3}}{2}. However, given the quadrant of our angle, it will be \displaystyle -\frac{\sqrt{3}}{2}.

Learning Tools by Varsity Tutors