SSAT Middle Level Math : How to multiply fractions

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Multiply Fractions

Express the product in simplest form:

\displaystyle \frac{5}{7} \cdot 1 \frac{1}{7} \cdot 2 \frac{4}{5}

Possible Answers:

\displaystyle 2 \frac{2}{7}

\displaystyle 2

\displaystyle 2\frac{8}{35}

\displaystyle 1\frac{6}{7}

\displaystyle 2 \frac{2}{5}

Correct answer:

\displaystyle 2 \frac{2}{7}

Explanation:

Rewrite the mixed fractions as improper fractions, cross-cancel, and multiply across:

\displaystyle \frac{5}{7} \cdot 1 \frac{1}{7} \cdot 2 \frac{4}{5} = \frac{5}{7} \cdot \frac{8}{7} \cdot \frac{14}{5}= \frac{1}{1} \cdot \frac{8}{7} \cdot \frac{2}{1}= \frac{16}{7}= 2\frac{2}{7}

Example Question #1 : How To Multiply Fractions

Evaluate:

\displaystyle 5.96 + 3.2 \times 1.5

Possible Answers:

\displaystyle 64.4

\displaystyle 6.44

\displaystyle 9.76

\displaystyle 13.74

\displaystyle 10.76

Correct answer:

\displaystyle 10.76

Explanation:

By order of operations, multiply first:

\displaystyle 3.2 \times 1.5

Multiply 32 by 15, and position the decimal point so that two digits are right of it:

\displaystyle 32 \times 15 = 480

\displaystyle 3.2 \times 1.5 = 4.80 = 4.8

Now add this product to 5.96:

\displaystyle 5.96 + 3.2 \times 1.5 = 5.96 + 4.8

Append a zero to the 4.8, and align the decimal points:

  \displaystyle 5.96

  \displaystyle \underline{4.80}

\displaystyle 10.76

 

Example Question #1 : How To Multiply Fractions

Evaluate:

\displaystyle 6.5 + 1.4 \times 1.6

Possible Answers:

\displaystyle 2.89

\displaystyle 8.74

\displaystyle 28.9

\displaystyle 12.64

\displaystyle 6.724

Correct answer:

\displaystyle 8.74

Explanation:

By order of operations, multiply first:

\displaystyle 1.4 \times 1.6

Multiply 14 by 16, and position the decimal point so that two digits are right of it:

\displaystyle 14 \times 16 = 224

\displaystyle 1.4 \times 1.6 = 2.24

Now add this product to 6.5:

\displaystyle 6.5 + 1.4 \times 1.6 = 6.5 + 2.24

Append a zero to the 6.5, and align the decimal points:

\displaystyle 6.50

\displaystyle \underline{2.24}

\displaystyle 8.74

Example Question #1 : How To Multiply Fractions

\displaystyle \frac{3}{5} \times \frac{1}{6} =

Possible Answers:

\displaystyle \frac{3}{11}

\displaystyle \frac{1}{2}

\displaystyle \frac{1}{10}

\displaystyle \frac{5}{18}

\displaystyle \frac{3}{5}

Correct answer:

\displaystyle \frac{1}{10}

Explanation:

When multiplying a fraction, simply multiply straight across - numerator times numerator, denominator times denominator. When you do that, you should get this answer:

\displaystyle \tfrac{3}{5} \times \tfrac{1}{6} = \tfrac{3}{30}

Do not forget to reduce. 3 and 30 can both be evenly divided by 3, which would give you \displaystyle \tfrac{1}{10} as your answer.

Example Question #1003 : Numbers And Operations

Multiply:

\displaystyle 0.58 \times 8.3

Possible Answers:

\displaystyle 4.814

\displaystyle 4.2164

\displaystyle 0.4814

\displaystyle 0.42164

\displaystyle 4.6574

Correct answer:

\displaystyle 4.814

Explanation:

First, multiply the numbers, ignoring the decimal points:

\displaystyle 58 \times 83 = 4814

Since the two factors in the original product have three digits to the right of the decimal points between them, position the decimal point in the product such that three digits are at its right. The result, therefore, is 

\displaystyle 4.814

Example Question #6 : How To Multiply Fractions

Multiply: \displaystyle 6.73 \times 0.006

Possible Answers:

\displaystyle 0.04308

\displaystyle 0.4038

\displaystyle 0.04038

\displaystyle 0.438

\displaystyle 0.0438

Correct answer:

\displaystyle 0.04038

Explanation:

First, remove the decimal points, multiplying as follows:

\displaystyle 673 \times 6 = 4 038

Between them, the two factors have five digits to the right of their decimal points, so position the decimal point in the product so that there are five digits to the right. This will require placing a zero in front as a placeholder, so the final result is 

\displaystyle 6.73 \times 0.006 = 0.04038

Example Question #2 : How To Multiply Fractions

Find \displaystyle \frac{3}{5}\cdot \frac{7}{9}.

Possible Answers:

\displaystyle 9

\displaystyle \frac{3}{5}

\displaystyle \frac{7}{15}

\displaystyle \frac{7}{5}

\displaystyle \frac{15}{7}

Correct answer:

\displaystyle \frac{7}{15}

Explanation:

To find the product of two fractions, multiply the numerators together and then multiply the denominators together.

\displaystyle \frac{3}{5}\cdot \frac{7}{9}=\frac{21}{45}, which can be reduced to \displaystyle \frac{7}{15}.

Example Question #2 : How To Multiply Fractions

Find \displaystyle \frac{5}{7}\cdot \frac{3}{4}=.

Possible Answers:

\displaystyle \frac{20}{21}

\displaystyle \frac{5}{7}

\displaystyle \frac{15}{28}

\displaystyle \frac{2}{3}

\displaystyle 4

Correct answer:

\displaystyle \frac{15}{28}

Explanation:

To find the product of two fractions, multiply the numerators together and then multiply the denominators together.

\displaystyle \frac{5}{7}\cdot \frac{3}{4}=\frac{15}{28}

Example Question #1 : How To Multiply Fractions

\displaystyle \frac{1}{3} \times \frac{4}{5}=? 

Possible Answers:

\displaystyle \frac{4}{8}

\displaystyle \frac{4}{15}

\displaystyle \frac{12}{5}

\displaystyle \frac{5}{12}

\displaystyle \frac{5}{8}

Correct answer:

\displaystyle \frac{4}{15}

Explanation:

Multiply the numerators together, and then multiply the denominators together:

\displaystyle \frac{1}{3} \times \frac{4}{5}=\frac{1\times 4}{3\times 5}=\frac{4}{15}

Example Question #2 : How To Multiply Fractions

What is the product of the two fractions below?

\displaystyle \frac{4}{5}\cdot\frac{7}{8}

Possible Answers:

\displaystyle \frac{7}{10}

\displaystyle \frac{10}{7}

\displaystyle \frac{14}{40}

\displaystyle \frac{6}{10}

\displaystyle \frac{27}{40}

Correct answer:

\displaystyle \frac{7}{10}

Explanation:

To solve for this expression, first multiple the numerators, and then multiply the demonators. 

\displaystyle \frac{4}{5}\cdot\frac{7}{8}

\displaystyle \frac{4\times7}{5\times8}

\displaystyle \frac{28}{40}

Simplify the fraction by removing a common factor.

\displaystyle \frac{28\div4}{40\div4}=\frac{7}{10}

Learning Tools by Varsity Tutors