Trigonometry : Trigonometric Identities

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Pythagorean Identities

Simplify \displaystyle \frac{1}{1-\cos^2\theta}.

Possible Answers:

\displaystyle \csc^2\theta

\displaystyle 1

\displaystyle \frac{1}{1-\cos^2\theta}

\displaystyle \sec^2\theta

\displaystyle \sin\theta\cos\theta

Correct answer:

\displaystyle \csc^2\theta

Explanation:

To simplify, recognize that \displaystyle 1-\cos^2\theta is a reworking on \displaystyle \sin^2+\cos^2=1, meaning that \displaystyle 1-\cos^2\theta=\sin^2\theta.

Plug that into our given equation:

\displaystyle \frac{1}{1-\cos^2\theta}=\frac{1}{\sin^2\theta}

Remember that \displaystyle \csc\theta=\frac{1}{\sin\theta}, so \displaystyle \frac{1}{\sin^2\theta}=\csc^2\theta.

Example Question #1 : Trigonometric Identities

Simplify \displaystyle \frac{1-\cos^2\theta}{\sin\theta\cos\theta}.

Possible Answers:

\displaystyle \cos\theta

\displaystyle \sec^2\theta

\displaystyle \csc\theta-\cos\theta

\displaystyle \tan\theta

\displaystyle \cot\theta

Correct answer:

\displaystyle \tan\theta

Explanation:

Recognize that \displaystyle 1-\cos^2\theta is a reworking on \displaystyle \sin^2+\cos^2=1, meaning that \displaystyle 1-\cos^2\theta=\sin^2\theta.

Plug that in to our given equation:

\displaystyle \frac{1-\cos^2\theta}{\sin\theta\cos\theta}=\frac{\sin^2\theta}{\sin\theta\cos\theta}

Notice that one of the \displaystyle \sin\theta's cancel out.

\displaystyle \frac{\sin\theta}{\cos\theta}=\tan\theta.

Example Question #1 : Trigonometric Identities

\displaystyle \frac{1}{(cos (33^{\circ}))^{2}} - (tan (33^{\circ}))^{2} = ?

Possible Answers:

0

-1

1

\displaystyle 3\sqrt{3}

\displaystyle \frac{5\sqrt{2}}{2}

Correct answer:

1

Explanation:

\displaystyle \frac{1}{(cos (33^{\circ}))^{2}} - (tan (33^{\circ}))^{2} = (sec (33^{\circ}))^{2}- (tan (33^{\circ}))^{2}

Recall the Pythagorean Identity:

\displaystyle 1 + (tan x)^{2} = (sec x)^{2}

We can rearrange the terms:

\displaystyle 1 = (sec x)^{2} - (tan x)^{2}

This is exactly what our original equation looks like, so the answer is 1.

Example Question #1 : Trigonometry

Simplify the equation using identities:

\displaystyle \cot^{2}x\cos x \sin x+ \cos x \sin x

Possible Answers:

\displaystyle \cot x

\displaystyle \cos^{2}x

1

\displaystyle \sin x

\displaystyle 1-\csc x

Correct answer:

\displaystyle \cot x

Explanation:

There are a couple valid strategies for solving this problem. The simplest is to first factor out \displaystyle \cos x\sin x from both sides. This leaves us with:

\displaystyle \cot^{2}x\cos x\sin x + \cos x \sin x = (\cos x \sin x)(cot^{2}x + 1)

Next, substitute with the known identity \displaystyle \cot^{2}x + 1=\csc^{2}x to get:

\displaystyle \cos x\sin x (\csc^{2}x)

From here, we can eliminate the quadratic by converting:

\displaystyle \csc^{2}x= \frac{1}{\sin^{2}x}

giving us

\displaystyle \frac{\cos x\sin x}{\sin^{2}x}=\frac{\cos x}{\sin x}= \cot x

Thus,

\displaystyle \cot^{2}x\cos x\sin x+\cos x\sin x = \cot x

Example Question #1 : Trigonometry

Simplify the expression: \displaystyle (1+\cos a)(1-\cos a)

Possible Answers:

\displaystyle \sin a

\displaystyle \cos a

The equation cannot be further simplified.

\displaystyle \sin^{2}a

\displaystyle 1-\cos^{2}a

Correct answer:

\displaystyle \sin^{2}a

Explanation:

The expression \displaystyle (1-\cos a)(1+\cos a) represents a difference of squares. In this case, the product is \displaystyle 1-\cos^{2}a (remember that 1 is also a perfect square).

One Pythagoran identity for trigonometric functions is: 

\displaystyle 1-\cos^{2}a = \sin^{2}a

Thus, we can say that the most simplified version of the expression is \displaystyle \sin^{2}a.

Example Question #1 : Trigonometry

If theta is in the second quadrant, and \displaystyle sin(\theta)= \frac{3}{5}, what is \displaystyle cos(\theta)?

Possible Answers:

\displaystyle \frac{5}{3}

\displaystyle \frac{4}{5}

\displaystyle -\frac{3}{5}

\displaystyle -\frac{4}{5}

\displaystyle \frac{3}{5}

Correct answer:

\displaystyle -\frac{4}{5}

Explanation:

Write the Pythagorean Identity.

\displaystyle sin^2(\theta)+cos^2(\theta)=1

Substitute the value of \displaystyle sin(\theta) and solve for \displaystyle cos(\theta).

\displaystyle (\frac{3}{5})^2+cos^2(\theta)=1

\displaystyle cos^2(\theta)=1-(\frac{3}{5})^2

\displaystyle cos^2(\theta)=1-(\frac{3}{5})^2= \frac{25}{25}-\frac{9}{25}=\frac{16}{25}

\displaystyle cos(\theta)=\pm \sqrt{\frac{16}{25}}=\pm \frac{4}{5}

Since the cosine is in the second quadrant, the correct answer is:

\displaystyle cos(\theta)=-\frac{4}{5}

Example Question #7 : Trigonometry

For which values of \displaystyle x is the following equation true?

\displaystyle sin(x)cos(x)tan(x) =1-cos^2(x)

Possible Answers:

\displaystyle x = 90^{\circ}, 180^{\circ}, 270^{\circ}

\displaystyle 0^{\circ}\leq x \leq 180^{\circ}

\displaystyle 0^{\circ}\leq x \leq 90^{\circ}

\displaystyle 0^{\circ}\leq x < 360^{\circ}

\displaystyle \mathbb{R}=(-\infty, \infty )

Correct answer:

\displaystyle \mathbb{R}=(-\infty, \infty )

Explanation:

According to the Pythagorean identity

\displaystyle sin^2x+cos^2x=1,

the right hand side of this equation can be rewritten as \displaystyle sin^2x. This yields the equation

\displaystyle sinxcosxtanx =sin^2x .

Dividing both sides by \displaystyle sinx yields:

\displaystyle cosxtanx=sinx .

Dividing both sides by \displaystyle cosx yields:

\displaystyle tanx=\frac{sinx}{cosx} .

This is precisely the definition of the tangent function; since the domain of \displaystyle tanx consists of all real numbers, the values of \displaystyle x which satisfy the original equation also consist of all real numbers. Hence, the correct answer is 

\displaystyle \mathbb{R}=(-\infty, \infty ).

 

 

Example Question #8 : Trigonometry

\displaystyle \sin^2x + \cos^2x + \tan^2x =

Possible Answers:

\displaystyle \csc^2x

\displaystyle \tan^2x-\cot^2x

\displaystyle \sec^2x

\displaystyle 1-\cos^2x

Correct answer:

\displaystyle \sec^2x

Explanation:

By the Pythagorean identity, the first two terms simplify to 1:

\displaystyle \sin^2x+\cos^2x+\tan^2x=1+\tan^2x.

Dividing the Pythagorean identity by \displaystyle \cos^2x allows us to simplify the right-hand side.

\displaystyle \frac{\sin^2x}{\cos^2x}+\frac{\cos^2x}{\cos^2x}=\frac{1}{\cos^2x}

\displaystyle \tan^2x+1=\sec^2x

Example Question #3 : Pythagorean Identities

What is \displaystyle sin^2x+cos^2x equal to?

Possible Answers:

\displaystyle tan(x)

\displaystyle 1

\displaystyle e

\displaystyle 0

Correct answer:

\displaystyle 1

Explanation:

Step 1: Recall the trigonometric identity that has sine and cosine in it...

\displaystyle sin^2x+cos^2x=1

The sum is equal to 1.

Example Question #10 : Trigonometry

Given \displaystyle \sin(\theta)=\frac{1}{4}, what is \displaystyle \cos(\theta)?

Possible Answers:

\displaystyle \cos(\theta)=\pm15/4

\displaystyle \cos(\theta)=15/16

\displaystyle \cos(\theta)=\pm\sqrt{\frac{15}{4}}

\displaystyle \cos(\theta)=15/4

Correct answer:

\displaystyle \cos(\theta)=\pm\sqrt{\frac{15}{4}}

Explanation:

Using the Pythagorean Identity

\displaystyle \sin^2+\cos^2=1,

one can solve for \displaystyle \cos^2(\theta) by plugging in \displaystyle (1/4)^2 for \displaystyle \sin^2.

Solving for \displaystyle \cos^2(\theta), you get it equal to \displaystyle 15/16.

Taking the square root of both sides will get the correct answer of 

\displaystyle \cos(\theta)=\pm\sqrt{\frac{15}{4}}.

 

Learning Tools by Varsity Tutors