ACT Math : How to find the value of the coefficient

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find The Value Of The Coefficient

What is the value of the coefficient in front of the term that includes \(\displaystyle x^{2}y^{7}\) in the expansion of \(\displaystyle \left ( 2x-y \right )^{9}\)?

 

Possible Answers:

\(\displaystyle -144\)

\(\displaystyle 144\)

\(\displaystyle 36\)

\(\displaystyle -36\)

Correct answer:

\(\displaystyle -144\)

Explanation:

Using the binomial theorem, the term containing the x2 ywill be equal to

 Act_math_113_14(2x)2(–y)7

=36(–4x2 y7)= -144x2y7

Example Question #2 : Binomials

A function of the form \(\displaystyle f(x)=ax^2+b\) passes through the points \(\displaystyle (0,7)\) and \(\displaystyle (-2,19)\).  What is the value of \(\displaystyle a\) ?

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 3\)

\(\displaystyle -2\)

\(\displaystyle -3\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 3\)

Explanation:

The easisest way to solve for \(\displaystyle a\) is to begin by plugging each pair of coordinates into the function.

Using our first point, we will plug in \(\displaystyle 0\) for \(\displaystyle x\) and \(\displaystyle 7\) for \(\displaystyle f(x)\).  This gives us the equation

\(\displaystyle 7=a(0)^2+b\).

Squaring 0 gives us 0, and multiplying this by \(\displaystyle a\) still gives 0, leaving only \(\displaystyle b\) on the right side, such that

\(\displaystyle 7 = b\).

We now know the value of \(\displaystyle b\), and we can use this to help us find \(\displaystyle a\).  Substituting our second set of coordinates into the function, we get

\(\displaystyle 19 = a(-2)^2+b\)

 which simplifies to

\(\displaystyle 19=4a+b\).

However, since we know \(\displaystyle b=7\), we can substitute to get

\(\displaystyle 19=4a+7\)

subtracting 7 from both sides gives

\(\displaystyle 12 = 4a\)

and dividing by 4 gives our answer

\(\displaystyle 3 = a\).

Example Question #3 : How To Find The Value Of The Coefficient

\(\displaystyle 2x^{2} \cdot x^{3}y^{2} \cdot 3y\) is equivalent to which of the following?

Possible Answers:

\(\displaystyle 6x^{6}y^{2}\)

\(\displaystyle 6xy\)

\(\displaystyle 5x^{5}y^{3}\)

\(\displaystyle 5x^{6}y^{2}\)

\(\displaystyle 6x^{5}y^{3}\)

Correct answer:

\(\displaystyle 6x^{5}y^{3}\)

Explanation:

To answer this problem, we need to multiply the expressions together, being mindful of how to correctly multiply like variables with exponents. To do this, we add the exponents together if the the like variables are being multiplied and subtract the exponents if the variables are being divided. So, for the presented data:

\(\displaystyle 2x^{2} \cdot x^{3}y^{2} \cdot 3y = 2x^{5} \cdot 3y^{3}\)

We then multiply the remaining expressions together. When we do this, we will multiply the coefficients together and combine the different variables into the final expression. Therefore:

\(\displaystyle 2x^{5} \cdot 3y^{3} = 6x^{5}y^{3}\)

This means our answer is \(\displaystyle 6x^{5}y^{3}\).

Example Question #23 : Polynomials

Give the coefficient of \(\displaystyle x^{2}\) in the product  

\(\displaystyle \left ( x+ 0.4\right ) (x - 0.2) (3x-0.7)\).

Possible Answers:

\(\displaystyle -0.1\)

\(\displaystyle 0.5\)

\(\displaystyle 2.5\)

\(\displaystyle 1.3\)

\(\displaystyle 0.7\)

Correct answer:

\(\displaystyle -0.1\)

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two \(\displaystyle x\) terms and one constant are multiplied; find the three products and add them, as follows:

 

\(\displaystyle \left (\underline{ x}+ 0.4\right ) (\underline{x} - 0.2) (3x\underline{-0.7})\)

\(\displaystyle x \cdot x \cdot (-0.7) = -0.7x^{2}\)

 

\(\displaystyle \left (\underline{ x}+ 0.4\right ) (x \underline{-0.2})(\underline{3x}-0.7)\)

\(\displaystyle x \cdot (-0.2) \cdot 3x= -0.6x^{2}\)

 

\(\displaystyle \left (x+ \underline{0.4}\right ) (\underline{x} - 0.2)(\underline{3x}-0.7)\)

\(\displaystyle 0.4 \cdot x \cdot 3x = 1.2 x^{2}\)

 

Add: \(\displaystyle -0.7x^{2}+ (-0.6x^{2})+ 1.2x^{2} = -0.1x^{2}\).

The correct response is \(\displaystyle -0.1\).

Example Question #4 : How To Find The Value Of The Coefficient

Give the coefficient of \(\displaystyle x^{2}\) in the product  

\(\displaystyle \left ( 2x + \frac{1}{3}\right ) \left ( x- \frac{1}{6}\right ) \left ( x+ \frac{1}{4}\right )\)

Possible Answers:

\(\displaystyle \frac{11}{12}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{7}{6}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{1}{6}\)

Correct answer:

\(\displaystyle \frac{1}{2}\)

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two \(\displaystyle x\) terms and one constant are multiplied; find the three products and add them, as follows:

\(\displaystyle \left ( \underline{2x }+ \frac{1}{3}\right ) \left ( \underline{x}- \frac{1}{6}\right ) \left ( x\underline{+ \frac{1}{4}}\right )\)

\(\displaystyle 2x \cdot x \cdot \frac{1}{4} = \frac{1}{2}x^{2}\)

 

\(\displaystyle \left ( \underline{2x }+ \frac{1}{3}\right ) \left ( x \underline{- \frac{1}{6}}\right ) \left ( \underline{x}+ \frac{1}{4}\right )\)

\(\displaystyle 2x \cdot \left (- \frac{1}{6} \right ) \cdot x = - \frac{1}{3}x^{2}\)

 

\(\displaystyle \left ( 2x\underline{ + \frac{1}{3}}\right ) \left ( \underline{x}- \frac{1}{6}\right ) \left ( \underline{x}+ \frac{1}{4}\right )\)

\(\displaystyle \frac{1}{3} \cdot x \cdot x= \frac{1}{3}x^{2}\)

 

Add: \(\displaystyle \frac{1}{2}x^{2} +\left ( - \frac{1}{3}x^{2} \right ) + \frac{1}{3}x^{2} = \frac{1}{2}x^{2}\)

The correct response is \(\displaystyle \frac{1}{2}\).

Example Question #22 : Polynomials

Give the coefficient of \(\displaystyle x^{5}\) in the binomial expansion of \(\displaystyle \left ( 2x+ 0.5\right )^{8}\).

Possible Answers:

\(\displaystyle 224\)

\(\displaystyle 26,880\)

\(\displaystyle 1,680\)

\(\displaystyle 14\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 224\)

Explanation:

If the expression \(\displaystyle \left ( A x + B\right )^{n}\) is expanded, then by the binomial theorem, the \(\displaystyle x^{k}\) term is

\(\displaystyle C(n, k) \cdot\left ( Ax \right )^{k} \cdot B ^{n - k}\)

\(\displaystyle = C(n, k) \cdot A ^{k} \cdot B ^{n - k} \cdot x^{k}\)

or, equivalently, the coefficient of \(\displaystyle x^{k}\) is 

\(\displaystyle C(n, k) \cdot A ^{k} \cdot B ^{n - k}\)

Therefore, the \(\displaystyle x^{5}\) coefficient can be determined by setting 

\(\displaystyle A = 2, B =0.5, k=5, n = 8\):

\(\displaystyle C(8,5) \cdot 2^{5} \cdot 0.5 ^{8-5}\)

\(\displaystyle =C(8,5) \cdot 2^{5} \cdot 0.5 ^{3}\)

\(\displaystyle = 56\cdot 32 \cdot 0.125\)

\(\displaystyle =224\)

Example Question #2 : Coefficients

Give the coefficient of \(\displaystyle x^{4}\) in the binomial expansion of \(\displaystyle \left (6x+ \frac{1}{6}\right )^{7}\).

Possible Answers:

\(\displaystyle 5,040\)

\(\displaystyle 1\)

\(\displaystyle 140\)

\(\displaystyle \frac{35}{6}\)

\(\displaystyle 210\)

Correct answer:

\(\displaystyle 210\)

Explanation:

If the expression \(\displaystyle \left ( A x + B\right )^{n}\) is expanded, then by the binomial theorem, the \(\displaystyle x^{k}\) term is

\(\displaystyle C(n, k) \cdot\left ( Ax \right )^{k} \cdot B ^{n - k}\)

\(\displaystyle = C(n, k) \cdot A ^{k} \cdot B ^{n - k} \cdot x^{k}\)

or, equivalently, the coefficient of \(\displaystyle x^{k}\) is 

\(\displaystyle C(n, k) \cdot A ^{k} \cdot B ^{n - k}\)

Therefore, the \(\displaystyle x^{4}\) coefficient can be determined by setting 

\(\displaystyle A = 6, B = \frac{1}{6}, n = 7, k= 4\):

\(\displaystyle C(7,4) \cdot 6 ^{4} \cdot\left ( \frac{1}{6} \right ) ^{7-4}\)

\(\displaystyle =C(7,4) \cdot 6 ^{4} \cdot\left ( \frac{1}{6} \right ) ^{3}\)

\(\displaystyle =35 \cdot 1,296 \cdot \frac{1}{216}\)

\(\displaystyle = 210\)

Example Question #1 : How To Find The Value Of The Coefficient

Give the coefficient of \(\displaystyle x^{5}\) in the binomial expansion of \(\displaystyle \left ( 0.2x+ 5 \right )^{7}\).

Possible Answers:

\(\displaystyle 20.16\)

\(\displaystyle 0.168\)

\(\displaystyle 315,000\)

\(\displaystyle 2,625\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0.168\)

Explanation:

If the expression \(\displaystyle \left ( A x + B\right )^{n}\) is expanded, then by the binomial theorem, the \(\displaystyle x^{k}\) term is

\(\displaystyle C(n, k) \cdot\left ( Ax \right )^{k} \cdot B ^{n - k}\)

\(\displaystyle = C(n, k) \cdot A ^{k} \cdot B ^{n - k} \cdot x^{k}\)

or, equivalently, the coefficient of \(\displaystyle x^{k}\) is 

\(\displaystyle C(n, k) \cdot A ^{k} \cdot B ^{n - k}\)

Therefore, the \(\displaystyle x^{5}\) coefficient can be determined by setting 

\(\displaystyle A = 0.2, B =5, k=5, n = 7\)

\(\displaystyle C(7,5) \cdot 0.2^{5} \cdot 5 ^{7 - 5}\)

\(\displaystyle = C(7,5) \cdot 0.2 ^{5} \cdot 5 ^{2}\)

\(\displaystyle = 21\cdot 0.00032 \cdot 25\)

\(\displaystyle = 0.168\)

Example Question #5 : Binomials

Give the coefficient of \(\displaystyle x^{2}\) in the product

\(\displaystyle \left (3x- 7 \right ) \left ( 4x+3\right )\left ( 2x-7\right )\).

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle -122\)

\(\displaystyle 75\)

\(\displaystyle 158\)

\(\displaystyle 46\)

Correct answer:

\(\displaystyle -122\)

Explanation:

While this problem can be answered by multiplying the three binomials, it is not necessary. There are three ways to multiply one term from each binomial such that two \(\displaystyle x\) terms and one constant are multiplied; find the three products and add them, as follows:

\(\displaystyle \left (\underline{3x}- 7 \right ) \left ( \underline{4x}+3\right )\left ( 2x\underline{-7}\right )\)

\(\displaystyle 3x \cdot 4x \cdot (-7) = -84x^{2}\)

 

\(\displaystyle \left (\underline{3x}- 7 \right ) \left ( 4x\underline{+3}\right )\left ( \underline{2x}-7\right )\)

\(\displaystyle 3x \cdot 3 \cdot 2x = 18x^{2}\)

 

\(\displaystyle \left (3x\underline{- 7} \right ) \left ( \underline{4x}+3\right )\left ( \underline{2x}-7\right )\)

\(\displaystyle -7 \cdot 4x \cdot 2x = -56x^{2}\)

 

Add: \(\displaystyle -84x^{2} + 18x^{2} - 56x^{2} = -122x^{2}\)

The correct response is -122.

Learning Tools by Varsity Tutors