Algebra 1 : Algebraic Functions

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find F(X)

A function is given by \displaystyle f(x)=3x^{2}+3x-4.  Find \displaystyle f(2).

Possible Answers:

\displaystyle 14

\displaystyle 18

\displaystyle 8

\displaystyle 22

\displaystyle 12

Correct answer:

\displaystyle 14

Explanation:

Plugging in 2 wherever \displaystyle x is present in the formula yields an answer of 14.

Example Question #1 : How To Find F(X)

If \displaystyle f(x) = 0.3x^{2}-9x, evaluate \displaystyle f(10).

Possible Answers:

\displaystyle 0

\displaystyle 27

\displaystyle -81

\displaystyle -60

\displaystyle 21

Correct answer:

\displaystyle -60

Explanation:

To solve this function, we simply need to understand that finding  \displaystyle f(10) means that \displaystyle x=10 in this specific case. So, we can just substitute 10 in for \displaystyle x.

 \displaystyle 0.3(10)^{2}=0.3\cdot 100=30 

\displaystyle 9x is equal to \displaystyle 90, so our final answer is

 \displaystyle 30-90 or \displaystyle -60.

Example Question #1 : How To Find F(X)

In which of these relations is \displaystyle y not a function of \displaystyle x ?

Possible Answers:

\displaystyle x+y = 1,000,000

\displaystyle y = \left | x-100\right |

\displaystyle x^{3}y = -1

\displaystyle x = y^{2} + 1

\displaystyle xy = 20

Correct answer:

\displaystyle x = y^{2} + 1

Explanation:

In the relation \displaystyle x = y^{2} + 1, there are many values of \displaystyle x that can be paired with more than one value of \displaystyle y - for example, \displaystyle (2,1),(2,-1).

To demonstrate that  \displaystyle y is a function of \displaystyle x in the other examples, we solve each for \displaystyle y:

\displaystyle x+y = 1,000,000 can be rewritten as \displaystyle y = 1,000,000 -x.

\displaystyle x^{3}y = -1 can be rewritten as \displaystyle y = -\frac{1}{x^{3}}

\displaystyle xy = 20 can be rewritten as \displaystyle y = \frac{20}{x}

\displaystyle y = \left | x-100\right | need not be rewritten. 

In each case, we see that for any value of \displaystyle x\displaystyle y can be uniquely defined.

Example Question #1 : How To Find F(X)

 \displaystyle f(x)= 2x^2 +x+2 

\displaystyle Evaluate\; f(6)

Possible Answers:

\displaystyle 80

\displaystyle 44

\displaystyle 72

\displaystyle 61

\displaystyle 86

Correct answer:

\displaystyle 80

Explanation:
\(\displaystyle f(6)= 2(6)^2 +6+2\)\(\displaystyle 2\times ×36+6+2\)\(\displaystyle 72+6+2=80\)

Example Question #2 : Algebraic Functions

What is the next number in the following sequence?

\displaystyle 10, 20, 25, 50, 55, 110, 115,...

Possible Answers:

\displaystyle 345

\displaystyle 155

\displaystyle 120

\displaystyle 130

\displaystyle 230

Correct answer:

\displaystyle 230

Explanation:

To form this sequence, alternately multiply by 2 and add 5:

\displaystyle \begin{matrix} 10 \cdot 2 = 20\\ 20+5 = 25\\ 25 \cdot 2 = 50\\ 50 + 5 = 55\\ 55 \cdot 2 = 110 \\ 110 + 5 = 115 \end{matrix}

To keep the pattern going, double the seventh term to get the eighth:

\displaystyle 115 \cdot 2 = 230

Example Question #3 : How To Find F(X)

Define \displaystyle f (x) = 3 - \sqrt{x-1} and \displaystyle g\left ( x\right ) = 3 + \sqrt{x-1}

Evaluate \displaystyle \left (fg \right ) (13)

Possible Answers:

\displaystyle 28

\displaystyle 26

\displaystyle -3

\displaystyle -5

\displaystyle \left (fg \right ) (13) is undefined.

Correct answer:

\displaystyle -3

Explanation:

\displaystyle f (x) = 3 - \sqrt{x-1}

\displaystyle f (13) = 3 - \sqrt{13-1} = 3 - \sqrt{12}

 

\displaystyle g(x) = 3 + \sqrt{x-1}

\displaystyle g(13) = 3 + \sqrt{13-1} = 3 + \sqrt{12}

 

The easiest way to find \displaystyle \left (fg \right ) (13) is to take advantage of the fact that the radical expressons are conjugates, and that their product follows the difference of squares pattern.

\displaystyle fg (13) = f (13) \cdot g (13) = (3 - \sqrt{12}) (3 + \sqrt{12})= 3^{2} - \left (\sqrt{12} \right )^{2} = 9- 12 = -3

Example Question #1 : How To Find F(X)

Define \displaystyle f (x) = 3 - \sqrt{x-1} and \displaystyle g\left ( x\right ) = 3 + \sqrt{x-1} .

Evaluate \displaystyle \left (fg \right ) (-4)

Possible Answers:

\displaystyle \left (fg \right ) (-4) is undefined.

\displaystyle -4

\displaystyle -14

\displaystyle 14

\displaystyle 4

Correct answer:

\displaystyle \left (fg \right ) (-4) is undefined.

Explanation:

The domain of \displaystyle fg is the intersection of the domains of the functions \displaystyle f and \displaystyle g. Both domains are restricted by the same radical expression; since it must hold that the common radicand \displaystyle x-1 is positive:

\displaystyle x-1 > 0 or \displaystyle x > 1

\displaystyle -4 is therefore outside of the domains of \displaystyle f and \displaystyle g and, subsequently, that of \displaystyle fg.

Example Question #2 : How To Find F(X)

What is the next number in the following sequence:

\displaystyle 7,8,10,13,17,22,28,...

Possible Answers:

\displaystyle 36

\displaystyle 37

\displaystyle 35

\displaystyle 34

\displaystyle 38

Correct answer:

\displaystyle 35

Explanation:

To get each member of this sequence, add a number that increases by one with each element:

\displaystyle 7 + 1 = 8

\displaystyle 8+2 = 10

\displaystyle 10+3= 13

\displaystyle 13+4=17

\displaystyle 17+5 = 22

\displaystyle 22+6=28

To get the next element, add 7:

\displaystyle 28 +7 =35

Example Question #4 : How To Find F(X)

If  \displaystyle g (x) = 5x - 2 , then what is \displaystyle g (3c - 8)  ?

Possible Answers:

\displaystyle 15c-14

\displaystyle 15c-10

\displaystyle 15c-38

\displaystyle 15c-23

\displaystyle 15c-42

Correct answer:

\displaystyle 15c-42

Explanation:

Replace \displaystyle x with \displaystyle 3c-8 in the definition, then simplify.

\displaystyle g (x) = 5x - 2

\displaystyle g (3c-8) = 5(3c-8) - 2 = 5 \cdot3c - 5\cdot 8 -2 = 15c -40-2 = 15c - 42

Example Question #2 : How To Find F(X)

If  \displaystyle g (x) = 3x + 2 , then what is \displaystyle g (2c - 7)  ?

 

Possible Answers:

\displaystyle 6c-23

\displaystyle 6c-19

\displaystyle 6c -3

\displaystyle 6c -5

\displaystyle 6c -11

Correct answer:

\displaystyle 6c-19

Explanation:

Replace \displaystyle x with \displaystyle 2c-7 in the definition, then simplify.

\displaystyle g (x) = 3x + 2

\displaystyle g (2c-7) = 3 (2c-7) + 2 = 3 \cdot 2c-3 \cdot 7 + 2= 6c -21+ 2 = 6c-19

Learning Tools by Varsity Tutors