Calculus 2 : Derivatives of Vectors

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Derivatives Of Vectors

Given the following vector:

\displaystyle \vec{u}=(x^n,arctan(x),3)

Find the second derivative of \displaystyle \vec{u}.

Possible Answers:

\displaystyle \left(n(n-1)x^{n-2},\frac{2x}{(1+x^2)^2},0\right)

\displaystyle \left(n(n-1)x^{n-2},\frac{-2x}{(1+x^2)^2},3\right)

\displaystyle \left(n(n-1)x^{n-2},\frac{-2x}{(1+x^2)^2},0\right)

\displaystyle \left(n(n-1)x^{n-2},\frac{-2x}{(1+x^2)^4},0\right)

\displaystyle \left(n(n-1)x^{n-1},\frac{-2x}{(1+x^2)^2},0\right)

Correct answer:

\displaystyle \left(n(n-1)x^{n-2},\frac{-2x}{(1+x^2)^2},0\right)

Explanation:

In order to obtain the second derivative, we will have to differentiate each component twice. We know how to differentiate the following:

\displaystyle (x^n)''=n(n-1)x^{n-2}.

We also have :

\displaystyle (arctan(x))'=\frac{1}{1+x^2}

and this gives:

\displaystyle \{arctan(x)\}''=\frac{-2x}{(1+x^2)^2}

For the constant component , we know that it is derivative is zero.

This gives us the solution that we are looking for:

\displaystyle \vec{u}''=\left(n(n-1)x^{n-2},\frac{-2x}{(1+x^2)^2},0\right)

Example Question #1 : Derivatives Of Vectors

Given that  . We define its gradient as :

\displaystyle \nabla f =\left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right]

Let  be given by:

 

What is the gradient of \displaystyle f?

Possible Answers:

\displaystyle \left[\frac{x_{1}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}\cdots \frac{x_{n}}{\sqrt{{x_{1}^2}+2x_{2}^2+\cdots+x_{n}^2}} \right]

\displaystyle \left[\frac{2x_{1}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}\cdots \frac{x_{n}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}} \right]

\displaystyle \left[\frac{x_{1}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}\cdots \frac{x_{n}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}} \right]

\displaystyle \left[\frac{x_{1}}{2\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}\cdots \frac{x_{n}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}} \right]

\displaystyle \left[\frac{x_{1}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}\cdots \frac{2x_{n}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}} \right]

Correct answer:

\displaystyle \left[\frac{x_{1}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}\cdots \frac{x_{n}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}} \right]

Explanation:

By definition, to find the gradient vector , we will have to find the gradient components. We know that the gradient components are that partial derivatives.

We know that in our case we have :

\displaystyle \frac{\partial f}{\partial x_{i}}=\frac{x_{i}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}

 

To see this, fix all other variables and assume that you have only \displaystyle x_{i} as the only variable.

Now we apply the given defintion , i.e,

\displaystyle \nabla f =\left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right]

with :

\displaystyle \frac{\partial f}{\partial x_{1}}=\frac{x_{1}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}

\displaystyle \frac{\partial f}{\partial x_{2}}=\frac{x_{2}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}

\displaystyle \frac{\partial f}{\partial x_{3}}=\frac{x_{3}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}

\displaystyle \vdots

\displaystyle \frac{\partial f}{\partial x_{n}}=\frac{x_{n}}{\sqrt{{x_{1}^2}+x_{2}^2+\cdots+x_{n}^2}}

this gives us the solution .

 

Example Question #2 : Derivatives Of Vectors

Let \displaystyle f:\mathbb{R}^{n}\mapsto \mathbb{R}.

We define the gradient of as:

\displaystyle \nabla f =\left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right]

Let \displaystyle f=sin(x_{1}+2x_{2}+\cdots nx_{n}).

Find the vector gradient.

Possible Answers:

Correct answer:

Explanation:

We note first that :

\displaystyle \frac{\partial f}{\partial x_{1}}=cos(x_{1}+2x_{2}+\cdots nx_{n})

Using the Chain Rule where \displaystyle x_{1} is the only variable here.

\displaystyle \frac{\partial f}{\partial x_{2}}=2 cos(x_{1}+2x_{2}+\cdots nx_{n})

Using the Chain Rule where \displaystyle x_{2} is the only variable here.

Continuing in this fashion we have:

\displaystyle \frac{\partial f}{\partial x_{n}}=ncos(x_{1}+2x_{2}+\cdots nx_{n})

Again using the Chain Rule and assuming that \displaystyle x_{n} is the variable and all the others are constant.

Now applying the given definition of the gradient we have the required result.

 

 

Example Question #3 : Derivatives Of Vectors

Let 

\displaystyle \vec{u}=(\sqrt{1+t^2},2\sqrt{1+t^2},3\sqrt{1+t^2},\cdots n\sqrt{1+t^2})

What is the derivative of \displaystyle \vec{u}?

Possible Answers:

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{2t}{\sqrt{t^2+1}},\cdots \frac{nt}{\sqrt{t+1}}\right)

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{2t}{\sqrt{t^2+1}},\cdots \frac{nt}{\sqrt{t^2+1}}\right)

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{t}{\sqrt{t^2+1}},\cdots \frac{t}{\sqrt{t^2+1}}\right)

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{2t}{\sqrt{t^2+1}},\cdots \frac{2t}{\sqrt{t^2+1}}\right)

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{t}{\sqrt{t^2+1}},\cdots \frac{nt}{\sqrt{t^2+1}}\right)

Correct answer:

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{2t}{\sqrt{t^2+1}},\cdots \frac{nt}{\sqrt{t^2+1}}\right)

Explanation:

To find the derivative of this vector, all we need to do is to differentiate each component with respect to t.

Use the Power Rule and the Chain Rule when differentiating.

\displaystyle (\sqrt{1+t^2})dt=(1+t^2)^\frac{1}{2}dt=\frac{1}{2}(1+t^2)^{-\frac{1}{2}}\cdot 2t=\frac{t}{\sqrt{t^2+1}}  is the derivative of the first component.

\displaystyle (2\sqrt{1+t^2})dt=2(1+t^2)^\frac{1}{2}dt=2\frac{1}{2}(1+t^2)^{-\frac{1}{2}}\cdot 2t=\frac{2t}{\sqrt{t^2+1}} of the second component.

\displaystyle \vdots

\displaystyle (n\sqrt{1+t^2})dt=n(1+t^2)^\frac{1}{2}dt=n\frac{1}{2}(1+t^2)^{-\frac{1}{2}}\cdot 2t=\frac{nt}{\sqrt{t^2+1}} is the derivative of the last component . we obtain then:

\displaystyle \left(\frac{t}{\sqrt{t^2+1}},\frac{2t}{\sqrt{t^2+1}},\cdots \frac{nt}{\sqrt{t^2+1}}\right)

Example Question #1 : Derivatives Of Vectors

Let \displaystyle u be given by:

\displaystyle \vec{u}=(artan(t),artan(2t),\cdots,artan(n-1)(t))

Find the derivative of \displaystyle \vec{u}.

Possible Answers:

\displaystyle \left(\frac{1}{1+t^2}, \frac{2}{1+4t^2},\frac{3}{1+3t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)^2t^2}\right)

\displaystyle \left(\frac{1}{1+t^2}, \frac{2}{1+4t^2},\frac{3}{1+9t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)^2t^2}\right)

\displaystyle \left(\frac{1}{1+t^2}, \frac{2}{1+4t^2},\frac{3}{1+9t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)^2t}\right)

\displaystyle \left(\frac{1}{1+t^2}, \frac{2}{1+4t^2},\frac{3}{1+9t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)t^2}\right)

\displaystyle \left(\frac{1}{1+t^2}, \frac{2}{1+2t^2},\frac{3}{1+9t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)^2t^2}\right)

Correct answer:

\displaystyle \left(\frac{1}{1+t^2}, \frac{2}{1+4t^2},\frac{3}{1+9t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)^2t^2}\right)

Explanation:

To find the derivative of u, we will have to find the derivative of every component.

Using the Chain Rule, we note that :

\displaystyle aratan(t)'=\frac{1}{1+t^2}

\displaystyle artan(2t)'=\frac{2}{1+(2t)^2}=\frac{2}{1+4t^2}

\displaystyle artan(3t)'=\frac{3}{1+(3t)^2}=\frac{3}{1+9t^2}

Continuing in the same fashion we have :

\displaystyle artan((n-1)t)'=\frac{(n-1)}{1+((n-1)t)^2}=\frac{n-1}{1+(n-1)^2t^2}

Ordering these components  pairwise , we have then:

\displaystyle \vec{u}'=\left(\frac{1}{1+t^2}, \frac{2}{1+4t^2},\frac{3}{1+3t^2}, \cdots\quad ,\frac{n-1}{1+(n-1)^2t^2}\right)

this is what we needed to show.

Example Question #2 : Derivatives Of Vectors

Let \displaystyle u be given by:

with \displaystyle b_{1}^2+b_{2}^2+\cdots b_{n}^2=1.

What is the value of \displaystyle \frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}+\cdots +\frac{\partial u}{\partial x_{n}}?

Possible Answers:

\displaystyle b_{1}^2+b_{2}^2+\cdots b_{n}^3

\displaystyle 0

\displaystyle b_{1}^2+b_{2}^2+\cdots b_{n}^2

\displaystyle 1-b_{2}^2+\cdots b_{n}^2

\displaystyle u

Correct answer:

\displaystyle u

Explanation:

To obtain the desired result, we will have to differentiate the expression of u with respect to each variable and add the derivatives.

We have

\displaystyle \frac{\partial u}{\partial x_{1}}=b_{1}^2e^{b_{1}^2x_{1}+b_{2}^2x_{2}+\cdots +b_{n}^2x_{n}}

\displaystyle \frac{\partial u}{\partial x_{2}}=b_{2}^2e^{b_{1}^2x_{1}+b_{2}^2x_{2}+\cdots +b_{n}^2x_{n}}

 

\displaystyle \frac{\partial u}{\partial x_{3}}=b_{3}^2e^{b_{1}^2x_{1}+b_{2}^2x_{2}+\cdots +b_{n}^2x_{n}}

\displaystyle \vdots

\displaystyle \frac{\partial u}{\partial x_{n}}=b_{n}^2e^{b_{1}^2x_{1}+b_{2}^2x_{2}+\cdots +b_{n}^2x_{n}}

we can also write the above expression as :

\displaystyle \frac{\partial u}{\partial x_{1}}=b_{1}^2u

\displaystyle \frac{\partial u}{\partial x_{2}}=b_{2}^2u

\displaystyle \vdots

\displaystyle \frac{\partial u}{\partial x_{n}}=b_{n}^2u

Now summing up we have:

But we are given that :

\displaystyle (b_{1}^2+b_{2}^2+\cdots b_{n}^2)=1

This gives:

\displaystyle \frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}+\cdots +\frac{\partial u}{\partial x_{n}}=u

Example Question #124 : Vector

Let \displaystyle \vec{u}=(t,tsin(t)) and \displaystyle \vec{v}=(tcos(t),t)

Let \displaystyle \vec{w}=\vec{u}+\vec{v}. What is the derivative of \displaystyle \vec{w}?

Possible Answers:

\displaystyle (cos(t)-(t-1)sin(t),sin(t)+cos(t)(t+1))

\displaystyle (cos(t)-(t+1)sin(t),sin(t)+cos(t)(t-1))

\displaystyle (cos(t)-(t+1)sin(t),cos(t)+cos(t)(t+1))

\displaystyle ((1-tsin(t)+cos(t),1+tcos(t)+sin(t))

\displaystyle (cos(t)+(t+1)sin(t),sin(t)+cos(t)(t+1))

Correct answer:

\displaystyle ((1-tsin(t)+cos(t),1+tcos(t)+sin(t))

Explanation:

One way to obtain the solution is that we first add the two functions to obtain \displaystyle \vec{w} and we differentiate with each component to get the result.

 Adding the two functions we obtain:

\displaystyle \vec{w}=(t+tcos(t), tsin(t)+t)

 

Now we will differentialte each component to get the derivative of \displaystyle \vec{w}.

We have :

\displaystyle \{t+tcos(t)\}'=1-tsin(t)+cos(t)

\displaystyle \{t+tsin(t)\}'=1+tcos(t)+sin(t)

\displaystyle \vec{w}'=((1-tsin(t)+cos(t),1+tcos(t)+sin(t))

Example Question #4 : Derivatives Of Vectors

We let \displaystyle \vec{u}=(t^{n},t^{m},t^{s}) with \displaystyle n>\{m,s\}, m, n , s\in\mathbb{N}.

What is the derivative of order \displaystyle n of \displaystyle \vec{u}?

Possible Answers:

\displaystyle (n,m,n)

\displaystyle (n!, m!, s!)

\displaystyle (n!,0,s!)

\displaystyle (n,0,0)

\displaystyle (n!,0,0)

Correct answer:

\displaystyle (n!,0,0)

Explanation:

To obtain the derivative we will need to compute the derivative of each component. Note that we have a polynomial in this case.

We are also given that \displaystyle n>m and \displaystyle n> s with m,n and s positive integers.

We know that if given \displaystyle f=t^n, then \displaystyle f^{[k]}=n(n-1)...(n-(k-1))t^{n-k}

so for k=n, we have \displaystyle [t^{n}]^{[n]}=n!

and

for m< n  .

In the same manner we have :

 

This shows that the derivative of order n is given by:

\displaystyle (n!,0,0)

 

Example Question #991 : Calculus Ii

Assuming that \displaystyle \vec{u}=(-e^{-t},artan(t),t-\frac{1}{t}) is the vector position of a moving vehicle. Can the velocity be zero?

Possible Answers:

Yes at \displaystyle (-\infty,0,1)

Yes at \displaystyle (-\infty, \infty,\infty)

Never

\displaystyle (0,\infty, 1)

Yes at \displaystyle (0, 1 ,1)

Correct answer:

Never

Explanation:

We first have to determine the expression of the velocity and see what happens as we move toward infinity.

Let us first compute the derivative. To do that, we do it componentwize.

We have,

\displaystyle (-e^{-t})'=e^{-t}

\displaystyle (artant)'=\frac{1}{1+t^2}

\displaystyle (t-\frac{1}{t})'=1+\frac{1}{t^2}

Therefore the expression of the velocity .

Since we have \displaystyle e^{-t}>0,\displaystyle \frac{1}{1+t^2}>0 ,\displaystyle 1+\frac{1}{t^2}>0 for all t.

The velocity can never be zero.

Example Question #1 : Derivatives Of Vectors

Let 

\displaystyle \vec{u}=(tln(t),arctan(t),\frac{1}{1-t}).

What are the values of \displaystyle t for which \displaystyle \vec{u} is defined?

Possible Answers:

\displaystyle (1,\infty)

\displaystyle (0 , 1)\cup (1 , \infty)

\displaystyle (0,\infty)

\displaystyle (0, 1)

\displaystyle [0,1]

Correct answer:

\displaystyle (0 , 1)\cup (1 , \infty)

Explanation:

To have \displaystyle \vec{u} defined, we need to have all the components defined on the same interval, \displaystyle ln(t) for \displaystyle t>0

\displaystyle arctan(t) is defined for all t.

\displaystyle \frac{1}{1-t} is defined if \displaystyle t\neq 1

This gives \displaystyle (t>0)\cap(t\neq 1)\cap (-\infty, \infty )=(0,1)\cup (1,\infty)

Learning Tools by Varsity Tutors