Calculus 3 : Angle between Vectors

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Angle Between Vectors

Find the angle between these two vectors, \displaystyle u=(3,4), and \displaystyle v=(9,-2).

Possible Answers:

\displaystyle 66^\circ

\displaystyle 50^\circ

\displaystyle 65.66^\circ

\displaystyle 65.7^\circ

\displaystyle 65.5^\circ

Correct answer:

\displaystyle 65.66^\circ

Explanation:

Lets remember the formula for finding the angle between two vectors.

\displaystyle \cos(\theta)=\frac{(u\cdot v)}{\left \| u\right \|\left \| v\right \|}

\displaystyle \cos(\theta)=\frac{((3\cdot 9)+(4\cdot (-2)))}{\sqrt{3^2+4^2}\sqrt{9^2+(-2)^2}}

\displaystyle \cos(\theta)=\frac{19}{\sqrt{25}\sqrt{85}}

\displaystyle \cos(\theta)=\frac{19}{5\sqrt{85}}

\displaystyle \theta=\cos^{-1}\Big(\frac{19}{5\sqrt{85}}\Big)\approx65.66^\circ

Example Question #1 : Vectors And Vector Operations

Calculate the angle between \displaystyle u=(1,2)\displaystyle v=(3,4).

Possible Answers:

\displaystyle 11^\circ

\displaystyle 10.4^\circ

\displaystyle 10.5^\circ

\displaystyle 10.3^\circ

\displaystyle 10^\circ

Correct answer:

\displaystyle 10.3^\circ

Explanation:

Lets recall the equation for finding the angle between vectors.

\displaystyle \cos(\theta)=\frac{(u\cdot v)}{\left \| u\right \|\left \| v\right \|}

\displaystyle \cos(\theta)=\frac{((1\cdot 3)+(2\cdot 4))}{\sqrt{1^2+2^2}\sqrt{3^2+4^2}}

\displaystyle \cos(\theta)=\frac{11}{\sqrt{5}\sqrt{25}}

\displaystyle \cos(\theta)=\frac{11}{5\sqrt{5}}

\displaystyle \theta=\cos^{-1}\Big(\frac{11}{5\sqrt{5}}\Big)\approx 10.3^\circ

 

Example Question #1 : Angle Between Vectors

What is the angle between the vectors \displaystyle \vec{a}= \hat{i}-3\hat{j} +7\hat{k} and \displaystyle \vec{b}= -2\hat{i}+\hat{j} +4\hat{k}?

Possible Answers:

\displaystyle \theta\approx37.2^{\circ}

\displaystyle \theta\approx49.2^{\circ}

\displaystyle \theta\approx9.1^{\circ}

\displaystyle \theta\approx78.1^{\circ}

Correct answer:

\displaystyle \theta\approx49.2^{\circ}

Explanation:

To find the angle between vectors, we must use the dot product formula

\displaystyle a\cdot b=\left | a\right |\left | b\right |cos\theta

where \displaystyle a\cdot b is the dot product of the vectors  \displaystyle a and \displaystyle b, respectively.

  \displaystyle \left | a\right | and \displaystyle \left | b\right | are the magnitudes of vectors \displaystyle a and \displaystyle b, respectively.

\displaystyle cos\theta is the angle between the two vectors.

 

Let vector \displaystyle a be represented as  \displaystyle \vec{a}= a_{1}\hat{i}+a_{2}\hat{j} +a_{3}\hat{k} and vector \displaystyle b  be represented as  \displaystyle \vec{b}= b_{1}\hat{i}+b_{2}\hat{j} +b_{3}\hat{k}.

 

The dot product of the vectors  \displaystyle a and \displaystyle b is \displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3}).

The magnitude of vector \displaystyle a is \displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}} and vector \displaystyle a is \displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}.

 

Rearranging the dot product formula to solve for \displaystyle \theta gives us\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )

For this problem,

\displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3})=1(-2)+(-3)(1)+(7)(4)

\displaystyle a\cdot b=-2-3+28=23

\displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}}=\sqrt{(1)^{2}+(-3)^{2}+(7)^{2}}

\displaystyle \left | a\right |=\sqrt{1+9+49}=\sqrt{59}

\displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}=\sqrt{(-2)^{2}+(1)^{2}+(4)^{2}}

\displaystyle \left | b\right |=\sqrt{4+1+16}=\sqrt{21}

\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )=cos^{-1}\left ( \frac{23}{\sqrt{59}\sqrt{21}}\right )=cos^{-1}\left ( \frac{23}{\sqrt{1239}}\right )

\displaystyle \theta\approx49.2^{\circ}

 

 

Example Question #1 : Vectors And Vector Operations

What is the angle between the vectors \displaystyle \vec{a}=2 \hat{i}-1\hat{j} +7\hat{k} and \displaystyle \vec{b}= \hat{i}+2\hat{j}?

Possible Answers:

\displaystyle \theta\approx0^{\circ}

\displaystyle \theta\approx45^{\circ}

\displaystyle \theta\approx90^{\circ}

\displaystyle \theta\approx8.1^{\circ}

Correct answer:

\displaystyle \theta\approx90^{\circ}

Explanation:

To find the angle between vectors, we must use the dot product formula

\displaystyle a\cdot b=\left | a\right |\left | b\right |cos\theta

where \displaystyle a\cdot b is the dot product of the vectors  \displaystyle a and \displaystyle b, respectively.

  \displaystyle \left | a\right | and \displaystyle \left | b\right | are the magnitudes of vectors \displaystyle a and \displaystyle b, respectively.

\displaystyle cos\theta is the angle between the two vectors.

 

Let vector \displaystyle a be represented as  \displaystyle \vec{a}= a_{1}\hat{i}+a_{2}\hat{j} +a_{3}\hat{k} and vector \displaystyle b  be represented as  \displaystyle \vec{b}= b_{1}\hat{i}+b_{2}\hat{j} +b_{3}\hat{k}.

 

The dot product of the vectors  \displaystyle a and \displaystyle b is \displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3}).

The magnitude of vector \displaystyle a is \displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}} and vector \displaystyle a is \displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}.

 

Rearranging the dot product formula to solve for \displaystyle \theta gives us\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )

For this problem,

\displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3})=2(1)+(-1)(2)+(7)(0)

\displaystyle a\cdot b=2-2+0=0

\displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}}=\sqrt{(2)^{2}+(1)^{2}+(7)^{2}}

\displaystyle \left | a\right |=\sqrt{4+1+49}=\sqrt{54}

\displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}=\sqrt{(1)^{2}+(2)^{2}+(0)^{2}}

\displaystyle \left | b\right |=\sqrt{1+4}=\sqrt{5}

\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )=cos^{-1}\left ( \frac{0}{\sqrt{54}\sqrt{5}}\right )=cos^{-1}\left (0\right )

\displaystyle \theta\approx90^{\circ}

The vectors are perpendicular

 

Example Question #1 : Vectors And Vector Operations

What is the angle between the vectors \displaystyle \vec{a}=-2 \hat{i}-3\hat{j} +\hat{k} and \displaystyle \vec{b}= \hat{i}+2\hat{j}+5\hat{k}?

Possible Answers:

\displaystyle \theta\approx81.58^{\circ}

\displaystyle \theta\approx8.37^{\circ}

\displaystyle \theta\approx120.8^{\circ}

\displaystyle \theta\approx98.42^{\circ}

Correct answer:

\displaystyle \theta\approx98.42^{\circ}

Explanation:

To find the angle between vectors, we must use the dot product formula

\displaystyle a\cdot b=\left | a\right |\left | b\right |cos\theta

where \displaystyle a\cdot b is the dot product of the vectors  \displaystyle a and \displaystyle b, respectively.

  \displaystyle \left | a\right | and \displaystyle \left | b\right | are the magnitudes of vectors \displaystyle a and \displaystyle b, respectively.

\displaystyle cos\theta is the angle between the two vectors.

 

Let vector \displaystyle a be represented as  \displaystyle \vec{a}= a_{1}\hat{i}+a_{2}\hat{j} +a_{3}\hat{k} and vector \displaystyle b  be represented as  \displaystyle \vec{b}= b_{1}\hat{i}+b_{2}\hat{j} +b_{3}\hat{k}.

 

The dot product of the vectors  \displaystyle a and \displaystyle b is \displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3}).

The magnitude of vector \displaystyle a is \displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}} and vector \displaystyle a is \displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}.

 

Rearranging the dot product formula to solve for \displaystyle \theta gives us\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )

For this problem,

\displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3})=-2(1)+(-3)(2)+(1)(5)

\displaystyle a\cdot b=-2-6+5=-3

\displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}}=\sqrt{(-2)^{2}+(-3)^{2}+(1)^{2}}

\displaystyle \left | a\right |=\sqrt{4+9+1}=\sqrt{14}

\displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}=\sqrt{(1)^{2}+(2)^{2}+(5)^{2}}

\displaystyle \left | b\right |=\sqrt{1+4+25}=\sqrt{30}

\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )=cos^{-1}\left ( \frac{-3}{\sqrt{14}\sqrt{30}}\right )=cos^{-1}\left (\frac{-3}{\sqrt{420}}\right )

\displaystyle \theta\approx98.42^{\circ}

 

 

Example Question #1 : Angle Between Vectors

What is the angle between the vectors \displaystyle \vec{a}= \hat{i}+3\hat{j} +5\hat{k} and \displaystyle \vec{b}= 2\hat{i}+6\hat{j}+10\hat{k}?

Possible Answers:

\displaystyle \theta\approx90^{\circ}

\displaystyle \theta\approx8.37^{\circ}

\displaystyle \theta\approx0^{\circ}

\displaystyle \theta\approx120^{\circ}

Correct answer:

\displaystyle \theta\approx0^{\circ}

Explanation:

To find the angle between vectors, we must use the dot product formula

\displaystyle a\cdot b=\left | a\right |\left | b\right |cos\theta

where \displaystyle a\cdot b is the dot product of the vectors  \displaystyle a and \displaystyle b, respectively.

  \displaystyle \left | a\right | and \displaystyle \left | b\right | are the magnitudes of vectors \displaystyle a and \displaystyle b, respectively.

\displaystyle cos\theta is the angle between the two vectors.

 

Let vector \displaystyle a be represented as  \displaystyle \vec{a}= a_{1}\hat{i}+a_{2}\hat{j} +a_{3}\hat{k} and vector \displaystyle b  be represented as  \displaystyle \vec{b}= b_{1}\hat{i}+b_{2}\hat{j} +b_{3}\hat{k}.

 

The dot product of the vectors  \displaystyle a and \displaystyle b is \displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3}).

The magnitude of vector \displaystyle a is \displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}} and vector \displaystyle a is \displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}.

 

Rearranging the dot product formula to solve for \displaystyle \theta gives us\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )

For this problem,

\displaystyle a\cdot b=a_{1}( b_{1})+a_{2}( b_{2})+a_{3}( b_{3})=1(2)+(3)(6)+(5)(10)

\displaystyle a\cdot b=2+18+50=70

\displaystyle \left | a\right |=\sqrt{(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}}=\sqrt{(1)^{2}+(3)^{2}+(5)^{2}}

\displaystyle \left | a\right |=\sqrt{1+9+25}=\sqrt{35}

\displaystyle \left | b\right |=\sqrt{(b_{1})^{2}+(b_{2})^{2}+(b_{3})^{2}}=\sqrt{(2)^{2}+(6)^{2}+(10)^{2}}

\displaystyle \left | b\right |=\sqrt{4+36+100}=\sqrt{140}\displaystyle \theta=cos^{-1}\left ( \frac{a\cdot b}{\left | a\right |\left | b\right |}\right )=cos^{-1}\left ( \frac{70}{\sqrt{35}\sqrt{140}}\right )=cos^{-1}\left (\frac{70}{\sqrt{4900}}\right )

\displaystyle \theta=cos^{-1}\left (\frac{70}{70}\right )=cos^{-1}\left (1\right )

\displaystyle \theta\approx0^{\circ}

The two vectors are parallel.

Example Question #1 : Angle Between Vectors

Find the approximate acute angle in degrees between the vectors \displaystyle < 2,2,5>, < 0,5,-1>.

Possible Answers:

None of the other answers

\displaystyle 80.17

\displaystyle 29.77

\displaystyle 79.23

\displaystyle 12.55

Correct answer:

\displaystyle 80.17

Explanation:

To find the angle between two vectors, use the formula

\displaystyle \theta = \cos^{-1}(\frac{\mathbf{a}\cdot\mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}).

\displaystyle \theta = \cos^{-1}(\frac{< 2,2,5>\cdot< 0,5,-1>}{\sqrt{4+4+25}\sqrt{0+25+1}})

\displaystyle \theta = \cos^{-1}(\frac{5}{\sqrt{858}})

\displaystyle \theta \approx 80.22

Example Question #2 : Angle Between Vectors

Find the angle between the following two vectors.

\displaystyle \vec{A}=3\hat{i}+5\hat{j}-\hat{k}, \vec{B}=6\hat{i}-2\hat{j}+5\hat{k}

Possible Answers:

\displaystyle 18.41 ^{\circ}

\displaystyle 3.61 ^{\circ}

\displaystyle 32.57 ^{\circ}

\displaystyle 86.39 ^{\circ}

Correct answer:

\displaystyle 86.39 ^{\circ}

Explanation:

In order to find the angle between two vectors, we need to take the quotient of their dot product and their magnitudes:

\displaystyle \frac{\vec{A}\cdot \vec{B}}{\left|\vec{A} \right| \left| \vec{B} \right| } = \cos{\theta}\Rightarrow \theta = \cos^{-1} \left( \frac{\vec{A}\cdot \vec{B}}{\left|\vec{A} \right| \left| \vec{B} \right| }\right )

Therefore, we find that

\displaystyle \vec{A}\cdot\vec{B}=3(6)+5(-2)-1(5)=3,

\displaystyle \left| \vec{A}\right| = \sqrt{3^2+5^2+1^2}=\sqrt{35}, \left| \vec{B}\right| = \sqrt{6^2+2^2+5^2}=\sqrt{65}

\displaystyle \theta = \cos^{-1} \left( \frac{3}{\sqrt{35}\sqrt{65} }\right)=86.39 ^{\circ}.

Example Question #9 : Angle Between Vectors

Find the (acute) angle between the vectors \displaystyle < 1,0,\frac{1}{2}>, < \frac{3}{2},0, 12> in degrees.

Possible Answers:

\displaystyle 40.542

\displaystyle 42.690

\displaystyle 82.341

\displaystyle 56.310

\displaystyle 8.659

Correct answer:

\displaystyle 56.310

Explanation:

To find the angle between vectors, we use the formula

\displaystyle \theta = \cos^{-1}(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}).

Substituting in our values, we get

\displaystyle \theta = \cos^{-1}(\frac{< 1,0,\frac{1}{2}> \cdot < \frac{3}{2},0,12>}{\sqrt{1^2+0^2+\frac{1}{2}^2}\sqrt{\frac{3}{2}^2+0^2+12^2}}) \approx \cos^{-1}(\frac{7.5}{13.521}) = 56.310

Example Question #10 : Angle Between Vectors

Find the angle between the two vectors. 

\displaystyle u=< 2,0>
\displaystyle v=< \sqrt{3}, 1>

Possible Answers:

\displaystyle \theta = \frac{\pi}{6}

\displaystyle \theta = \frac{\pi}{3}

\displaystyle \theta = \frac{\pi}{2}

No angle exists

Correct answer:

\displaystyle \theta = \frac{\pi}{6}

Explanation:

To find the angle between two vector we use the following formula

\displaystyle cos \, \theta = \frac{u\bullet v}{\left \| u\right \|*\left \| v\right \|}

and solve for \displaystyle \theta.

Given

\displaystyle u=< 2,0>
\displaystyle v=< \sqrt{3}, 1> we find

\displaystyle u\bullet v= 2*\sqrt3+0*1=2\sqrt3

\displaystyle \left \| u\right \|=\sqrt{2^2+0^2}=\sqrt4=2

\displaystyle \left \| v\right \|=\sqrt{\sqrt{3}^2+1^2}=\sqrt4=2

Plugging these values in we get

\displaystyle cos\, \theta = \frac{2\sqrt3}{2*2}=\frac{\sqrt3}{2}

To find \displaystyle \theta we calculate the \displaystyle cos^{-1} of both sides

\displaystyle cos^{-1}[cos(\theta)]=cos^{-1}(\frac{\sqrt3}{2})

and find that

\displaystyle \theta = \frac{\pi}{6}

Learning Tools by Varsity Tutors