College Algebra : Miscellaneous Functions

Study concepts, example questions & explanations for College Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Miscellaneous Functions

Define a function \(\displaystyle f(x) = \sqrt{4x- 9}\).

Which statement correctly gives \(\displaystyle f^{-1}(x)\)?

Possible Answers:

\(\displaystyle f^{-1}(x)= \frac{9}{4} x ^{2}+4\)

\(\displaystyle f^{-1}(x)= \frac{1}{4} x ^{2}+ \frac{9}{4}\)

\(\displaystyle f^{-1}(x)= \frac{9}{4} x ^{2}+ \frac{1}{4}\)

\(\displaystyle f^{-1}(x)= \frac{1}{4} x ^{2}+9\)

\(\displaystyle f^{-1}(x)= \frac{9}{4} x ^{2}+9\)

Correct answer:

\(\displaystyle f^{-1}(x)= \frac{1}{4} x ^{2}+ \frac{9}{4}\)

Explanation:

The inverse function \(\displaystyle f^{-1}(x)\) of a function \(\displaystyle f(x)\) can be found as follows:

Replace \(\displaystyle f(x)\) with \(\displaystyle y\):

\(\displaystyle f(x) = \sqrt{4x- 9}\)

\(\displaystyle y= \sqrt{4x- 9}\)

Switch the positions of \(\displaystyle y\) and \(\displaystyle x\):

\(\displaystyle x= \sqrt{4y- 9}\)

or

\(\displaystyle \sqrt{4y- 9} = x\)

Solve for \(\displaystyle y\). This can be done as follows:

Square both sides:

\(\displaystyle \left (\sqrt{4y- 9} \right ) ^{2}= x ^{2}\)

\(\displaystyle 4y- 9 = x ^{2}\)

Add 9 to both sides:

\(\displaystyle 4y- 9+9 = x ^{2}+9\)

\(\displaystyle 4y = x ^{2}+9\)

Multiply both sides by \(\displaystyle \frac{1}{4}\), distributing on the right:

\(\displaystyle \frac{1}{4} \cdot 4y = \frac{1}{4} \cdot \left (x ^{2}+9 \right )\)

\(\displaystyle y = \frac{1}{4} \cdot x ^{2}+ \frac{1}{4} \cdot 9\)

\(\displaystyle y = \frac{1}{4} x ^{2}+ \frac{9}{4}\)

Replace \(\displaystyle y\) with \(\displaystyle f^{-1}(x)\):

\(\displaystyle f^{-1}(x)= \frac{1}{4} x ^{2}+ \frac{9}{4}\)

Example Question #2 : Miscellaneous Functions

Function

Refer to the above diagram, which shows the graph of a function \(\displaystyle f(x)\).

True or false: \(\displaystyle f\left ( \frac{1}{2} \right ) = 2\).

Possible Answers:

True

False

Correct answer:

False

Explanation:

The statement is false. Look for the point on the graph of \(\displaystyle f(x)\) with \(\displaystyle x\)-coordinate \(\displaystyle \frac{1}{2}\) by going right \(\displaystyle \frac{1}{2}\) unit, then moving up and noting the \(\displaystyle y\)-value, as follows:

Function

\(\displaystyle f \left ( \frac{1}{2} \right ) = \frac{3}{2}\), so the statement is false.

Example Question #3 : Miscellaneous Functions

Function

The above diagram shows the graph of function \(\displaystyle f(x)\) on the coordinate axes. True or false: The \(\displaystyle y\)-intercept of the graph is \(\displaystyle (0, 3)\)

Possible Answers:

True

False

Correct answer:

False

Explanation:

The \(\displaystyle y\)-intercept of the graph of a function is the point at which it intersects the \(\displaystyle y\)-axis (the vertical axis). That point is marked on the diagram below:

Function

The point is about one and three-fourths units above the origin, making the coordinates of the \(\displaystyle y\)-intercept \(\displaystyle \left ( 0, 1\frac{3}{4}\right )\).

Example Question #1 : Miscellaneous Functions

Function

A function \(\displaystyle f(x)\) is defined on the domain \(\displaystyle \left \{ 1, 2, 3, 4, 5\right \}\) according to the above table. 

Define a function \(\displaystyle g(x) = 3x- 5\). Which of the following values is not in the range of the function \(\displaystyle (g \circ f )(x)\)?

Possible Answers:

\(\displaystyle 34\)

\(\displaystyle 58\)

\(\displaystyle 10\)

\(\displaystyle 45\)

\(\displaystyle 19\)

Correct answer:

\(\displaystyle 45\)

Explanation:

This is the composition of two functions. By definition, \(\displaystyle (g \circ f )(x) = g \left [ f(x)\right ]\).  To find the range of \(\displaystyle (g \circ f )(x)\), we need to find the values of this function for each value in the domain of \(\displaystyle f(x)\). Since \(\displaystyle (g \circ f )(x) = g \left [ f(x)\right ]\), this is equivalent to evaluating \(\displaystyle g(x)\) for each value in the range of \(\displaystyle f(x)\), as follows:

 

\(\displaystyle g(x) = 3x- 5\)

Range value: 3 

\(\displaystyle g(3) = 3 (3)- 5 = 9 - 5 = 4\)

Range value: 5

\(\displaystyle g(5) = 3 (5)- 5 = 15 - 5 = 10\)

Range value: 8

\(\displaystyle g(8) = 3 (8)- 5 = 24 - 5 = 19\)

Range value: 13

\(\displaystyle g(13) = 3 (13)- 5 = 39 - 5 = 34\)

Range value: 21

\(\displaystyle g(21) = 3 (21)- 5 = 63 - 5 = 58\)

 

The range of \(\displaystyle g(x)\) on the set of range values of \(\displaystyle f(x)\) - and consequently, the range of \(\displaystyle \left (g \circ f \right ) (x)\) - is the set \(\displaystyle \left \{4 , 10, 19, 34, 58\right \}\). Of  the five choices, only 45 does not appear in this set; this is the correct choice.

Example Question #5 : Miscellaneous Functions

Evaluate: \(\displaystyle \sum_{k =2}^{5} (-1)^{k}(3k+1)\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle -6\)

\(\displaystyle 46\)

\(\displaystyle -46\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle -6\)

Explanation:

Evaluate the expression \(\displaystyle (-1)^{k}(3k+1)\) for \(\displaystyle k = 2, 3, 4, 5\), then add the four numbers:

\(\displaystyle a_{k} = (-1)^{k}(3k+1)\)

\(\displaystyle a_{2} = (-1)^{2}(3 \cdot 2 +1) = 1 (6+ 1) = 7\)

\(\displaystyle a_{3} = (-1)^{3}(3 \cdot 3 +1) = -1 (9+ 1) = -10\)

\(\displaystyle a_{4} = (-1)^{4}(3 \cdot 4 +1) = 1 (12+ 1) = 13\)

\(\displaystyle a_{5} = (-1)^{5}(3 \cdot 5 +1) =- 1 (15+ 1) = -16\)

\(\displaystyle \sum_{k =2}^{5} (-1)^{k}(3k+1) = 7 +( -10) + 13 + (-16 ) = -6\) 

Example Question #6 : Miscellaneous Functions

Evaluate: \(\displaystyle \sum_{k =3}^{7} (-2)^{k}\)

Possible Answers:

\(\displaystyle -88\)

\(\displaystyle -248\)

\(\displaystyle 248\)

\(\displaystyle 0\)

\(\displaystyle 88\)

Correct answer:

\(\displaystyle -88\)

Explanation:

Evaluate the expression \(\displaystyle \sum_{k =3}^{7} (-2)^{k}\) for \(\displaystyle k = 3, 4, 5, 6, 7\), then add the five numbers:

\(\displaystyle a_{n} = (-2)^{k}\)

\(\displaystyle a_{3} = (-2)^{3} = -8\)

\(\displaystyle a_{4} = (-2)^{4 } =16\)

\(\displaystyle a_{5} = (-2)^{5 } =-32\)

\(\displaystyle a_{6} = (-2)^{6 } =64\)

\(\displaystyle a_{7} = (-2)^{7 } =-128\)

\(\displaystyle \sum_{k =3}^{7} (-2)^{k} = -8 + 16 + (-32)+ 64 +( -128 ) = -88\)

Example Question #7 : Miscellaneous Functions

\(\displaystyle \left \lfloor N \right \rfloor\) refers to the floor of \(\displaystyle N\), the greatest integer less than or equal to \(\displaystyle N\).

\(\displaystyle \left \lceil N \right \rceil\) refers to the ceiling of \(\displaystyle N\), the least integer greater than or equal to \(\displaystyle N\).

Define \(\displaystyle f(x) = \left \lfloor \frac{1}{2}x- \frac{2}{3} \right \rfloor\) and \(\displaystyle g(x) = \left \lceil \frac{2}{3}x- \frac{1}{2} \right \rceil\)

Which of the following is equal to \(\displaystyle (f \circ g ) \left ( \frac{11}{4} \right )\)?

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle -2\)

\(\displaystyle -1\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle (f \circ g ) \left ( \frac{11}{4} \right ) =f\left ( g \left ( \frac{11}{4} \right ) \right )\), so, first, evaluate \(\displaystyle g \left ( \frac{11}{4} \right )\) by substitution:

\(\displaystyle g(x) = \left \lceil \frac{2}{3}x- \frac{1}{2} \right \rceil\)

\(\displaystyle g \left ( \frac{11}{4} \right ) = \left \lceil \frac{2}{3} \left ( \frac{11}{4} \right ) - \frac{1}{2} \right \rceil\)

\(\displaystyle = \left \lceil \frac{11}{6} - \frac{1}{2} \right \rceil\)

\(\displaystyle = \left \lceil \frac{4}{3} \right \rceil\)

\(\displaystyle = 2\)

\(\displaystyle (f \circ g ) \left ( \frac{11}{4} \right ) =f\left ( g \left ( \frac{11}{4} \right ) \right ) = f(2)\), so evaluate \(\displaystyle f(2)\) by substitution.

\(\displaystyle f(x) = \left \lfloor \frac{1}{2}x- \frac{2}{3} \right \rfloor\)

\(\displaystyle f(2) = \left \lfloor \frac{1}{2} (2)- \frac{2}{3} \right \rfloor\)

\(\displaystyle = \left \lfloor1 - \frac{2}{3} \right \rfloor\)

\(\displaystyle = \left \lfloor \frac{1}{3} \right \rfloor\)

\(\displaystyle = 0\),

the correct response.

Example Question #8 : Miscellaneous Functions

\(\displaystyle \left \lfloor N \right \rfloor\) refers to the floor of \(\displaystyle N\), the greatest integer less than or equal to \(\displaystyle N\).

\(\displaystyle \left \lceil N \right \rceil\) refers to the ceiling of \(\displaystyle N\), the least integer greater than or equal to \(\displaystyle N\).

Define \(\displaystyle f(x) = \left \lceil 2.2x +6.3 \right \rceil\) and \(\displaystyle g (x) = \left \lfloor -2.1 x + 9.3 \right \rfloor\).

Evaluate \(\displaystyle (f \circ g )(3.4 )\)

Possible Answers:

\(\displaystyle -20\)

\(\displaystyle 10\)

\(\displaystyle -19\)

\(\displaystyle -21\)

\(\displaystyle 11\)

Correct answer:

\(\displaystyle 11\)

Explanation:

\(\displaystyle (f \circ g )(3.4 ) = f(g(3.4))\), so first, evaluate \(\displaystyle g(3.4 )\) using substitution:

\(\displaystyle g (x) = \left \lfloor -2.1 x + 9.3 \right \rfloor\)

\(\displaystyle g (3.4) = \left \lfloor -2.1 (3.4) + 9.3 \right \rfloor\)

\(\displaystyle = \left \lfloor -7.14+ 9.3 \right \rfloor\)

\(\displaystyle = \left \lfloor 2.16 \right \rfloor\)

\(\displaystyle = 2\)

\(\displaystyle (f \circ g )(3.4 ) = f(g(3.4)) = f(2)\), so evaluate \(\displaystyle f(2)\) using substitution:

\(\displaystyle f(x) = \left \lceil 2.2x +6.3 \right \rceil\)

\(\displaystyle = \left \lceil 2.2 (2) +6.3 \right \rceil\)

\(\displaystyle = \left \lceil 4.4 +6.3 \right \rceil\)

\(\displaystyle = \left \lceil 10.7 \right \rceil\)

\(\displaystyle = 11\),

the correct response.

Example Question #9 : Miscellaneous Functions

Consider the polynomial

\(\displaystyle 2x^{5} + 3 x^{2}- 4x + k\),

where \(\displaystyle k\) is a real constant. For \(\displaystyle x- 2\) to be a zero of this polynomial, what must \(\displaystyle c\) be?

Possible Answers:

None of the other choices gives the correct response.

\(\displaystyle k= -44\)

\(\displaystyle k= 68\)

\(\displaystyle k= 44\)

\(\displaystyle k = -68\)

Correct answer:

\(\displaystyle k = -68\)

Explanation:

By the Factor Theorem, \(\displaystyle x- c\) is a zero of a polynomial \(\displaystyle P(x)\) if and only if \(\displaystyle P(c) = 0\). Here, \(\displaystyle c = 2\), so evaluate the polynomial, in terms of \(\displaystyle k\), for \(\displaystyle x=2\) by substituting 2 for \(\displaystyle x\):

\(\displaystyle 2 \cdot 2^{5} + 3 \cdot 2^{2}- 4 \cdot 2 + k\)

\(\displaystyle = 2 \cdot 32 + 3 \cdot 4 - 4 \cdot 2 + k\)

\(\displaystyle =64 + 12 - 8 + k\)

\(\displaystyle =68 + k\)

Set this equal to 0:

\(\displaystyle 68 + k = 0\)

\(\displaystyle k = -68\)

Learning Tools by Varsity Tutors