Common Core: 5th Grade Math : Measurement & Data

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Measurement & Data

What is the area, in meters, of a rectangle that is 200 centimeters long and 5 meters wide?

(1 meter is equivalent to 100 centimeters.)

Possible Answers:

\(\displaystyle 1000\ cm^2\)

\(\displaystyle 10\ m\)

\(\displaystyle 1000\ m^2\)

\(\displaystyle 10\ m^2\)

\(\displaystyle 20\ m^2\)

Correct answer:

\(\displaystyle 10\ m^2\)

Explanation:

 

 

 

Example Question #2 : Measurement & Data

How many \(\displaystyle feet\) are in \(\displaystyle 72\ inches?\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 8\)

\(\displaystyle 4\)

\(\displaystyle 6\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 6\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ foot=12\ inches\), and we can use \(\displaystyle x\) has our unknown. 

\(\displaystyle \frac{1\ foot}{12\ inches}=\frac{x\ feet}{72\ inches}\)

Next, we want to cross multiply and divide to isolate the \(\displaystyle x\) on one side. 

\(\displaystyle 12\ inches\times x\ feet= 1\ foot \times 72\ inches\)

\(\displaystyle 6\ feet= \frac{1\ foot \times 72\ inches}{12\ inches}\)

The \(\displaystyle \yards\)\(\displaystyle \ inches\) will cancel and we are left with \(\displaystyle 6\ feet\)

Example Question #3 : Measurement & Data

How many \(\displaystyle meters\) are in \(\displaystyle 6\ centimeters?\)

 

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle .06\)

\(\displaystyle 60\)

\(\displaystyle .006\)

\(\displaystyle 600\)

Correct answer:

\(\displaystyle .06\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ centimeter= .01\ meters\) and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{6\ centimeters}{x\ meters}\)

Next, we want to cross multiply and divide to isolate the  on one side. 

\(\displaystyle 1\ centimeter\times x\ meters=.01\ meter\times 6\ centimeters\)

\(\displaystyle x\ meters=\frac{.01\ meter\times 6\ centimeters}{1\ centimeter}\)

The \(\displaystyle centimeters\) will cancel and we are left with \(\displaystyle .06\ meters\)

Example Question #4 : Measurement & Data

How many \(\displaystyle centimeters\) are in \(\displaystyle 3\ meters?\)

Possible Answers:

\(\displaystyle 3,000\)

\(\displaystyle 3\)

\(\displaystyle 300\)

\(\displaystyle 30\)

\(\displaystyle .03\)

Correct answer:

\(\displaystyle 300\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ centimeter= .01\ meters\) and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{3\ meters}\)

Next, we want to cross multiply and divide to isolate the  on one side. 

\(\displaystyle 1\ centimeter\times 3\ meters=.01\ meter\times x\ centimeters\)

\(\displaystyle \frac{1\ centimeter\times 3\ meters}{.01\ meter}= x\ centimeters\)

The \(\displaystyle meters\) will cancel and we are left with \(\displaystyle 300\ centimeters\)

Example Question #4 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \(\displaystyle centimeters\) are in \(\displaystyle 7\ meters?\)

Possible Answers:

\(\displaystyle 70\)

\(\displaystyle .07\)

\(\displaystyle 700\)

\(\displaystyle 7,000\)

\(\displaystyle .007\)

Correct answer:

\(\displaystyle 700\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ centimeter= .01\ meters\) and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{7\ meters}\)

Next, we want to cross multiply and divide to isolate the  on one side. 

\(\displaystyle 1\ centimeter\times 7\ meters=.01\ meter\times x\ centimeters\)

\(\displaystyle \frac{1\ centimeter\times 7\ meters}{.01\ meter}= x\ centimeters\)

The \(\displaystyle meters\) will cancel and we are left with \(\displaystyle 700\ centimeters\)

Example Question #5 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \(\displaystyle centimeters\) are in \(\displaystyle 9\ meters?\)

Possible Answers:

\(\displaystyle .009\)

\(\displaystyle .09\)

\(\displaystyle 900\)

\(\displaystyle 90\)

\(\displaystyle 9,000\)

Correct answer:

\(\displaystyle 900\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ centimeter= .01\ meters\) and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{9\ meters}\)

Next, we want to cross multiply and divide to isolate the  on one side. 

\(\displaystyle 1\ centimeter\times 9\ meters=.01\ meter\times x\ centimeters\)

\(\displaystyle \frac{1\ centimeter\times 9\ meters}{.01\ meter}= x\ centimeters\)

The \(\displaystyle meters\) will cancel and we are left with \(\displaystyle 900\ centimeters\)

Example Question #6 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \(\displaystyle centimeters\) are in \(\displaystyle 17\ meters?\)

Possible Answers:

\(\displaystyle 1.7\)

\(\displaystyle .0017\)

\(\displaystyle 1,700\)

\(\displaystyle 170\)

\(\displaystyle 17,000\)

Correct answer:

\(\displaystyle 1,700\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ centimeter= .01\ meters\) and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ centimeter}{.01\ meter}=\frac{x\ centimeters}{17\ meters}\)

Next, we want to cross multiply and divide to isolate the  on one side. 

\(\displaystyle 1\ centimeter\times 17\ meters=.01\ meter\times x\ centimeters\)

\(\displaystyle \frac{1\ centimeter\times 17\ meters}{.01\ meter}= x\ centimeters\)

The \(\displaystyle meters\) will cancel and we are left with \(\displaystyle 1,700\ centimeters\)

Example Question #3 : Measurement

How many \(\displaystyle inches\) are in \(\displaystyle 6\ yards?\)

 

Possible Answers:

\(\displaystyle 216\)

\(\displaystyle 246\)

\(\displaystyle 200\)

\(\displaystyle 232\)

\(\displaystyle 304\)

Correct answer:

\(\displaystyle 216\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ yard=36\ inches\), and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ yard}{36\ inches}=\frac{6\ yards}{x\ inches}\)

Next, we want to cross multiply and divide to isolate the \(\displaystyle x\) on one side. 

\(\displaystyle 36\ inches\times 6\ yards= 1\ yard \times x\ inches\)

\(\displaystyle \frac{36\ inches\times 6\ yards}{1\ yard}= 216\ inches\)

The \(\displaystyle \yards\)\(\displaystyle \ yards\) will cancel and we are left with \(\displaystyle 216\ inches\)

Example Question #8 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \(\displaystyle inches\) are in \(\displaystyle 3\ yards?\) 

Possible Answers:

\(\displaystyle 108\)

\(\displaystyle 116\)

\(\displaystyle 36\)

\(\displaystyle 112\)

\(\displaystyle 49\)

Correct answer:

\(\displaystyle 108\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ yard=36\ inches\), and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ yard}{36\ inches}=\frac{3\ yards}{x\ inches}\)

Next, we want to cross multiply and divide to isolate the \(\displaystyle x\) on one side. 

\(\displaystyle 36\ inches\times 3\ yards= 1\ yard \times x\ inches\)

\(\displaystyle \frac{36\ inches\times 3\ yards}{1\ yard}= 108\ inches\)

The \(\displaystyle \yards\)\(\displaystyle \ yards\) will cancel and we are left with \(\displaystyle 108\ inches\)

Example Question #9 : Convert Among Different Sized Standard Measurement Units: Ccss.Math.Content.5.Md.A.1

How many \(\displaystyle yards\) are in \(\displaystyle 396\ inches?\)

Possible Answers:

\(\displaystyle 11\)

\(\displaystyle 10\)

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 11\)

Explanation:

To solve this problem we can make proportions.

We know that \(\displaystyle 1\ yard=36\ inches\), and we can use \(\displaystyle x\) as our unknown. 

\(\displaystyle \frac{1\ yard}{36\ inches}=\frac{x\ yards}{396\ inches}\)

Next, we want to cross multiply and divide to isolate the \(\displaystyle x\) on one side. 

\(\displaystyle 36\ inches\times x\ yards= 1\ yard \times 396\ inches\)

\(\displaystyle 11\ yards= \frac{1\ yard \times 396\ inches}{36\ inches}\)

The \(\displaystyle \yards\)\(\displaystyle \ inches\) will cancel and we are left with \(\displaystyle 11\ yards\)

Learning Tools by Varsity Tutors