Common Core: 7th Grade Math : The Number System

Study concepts, example questions & explanations for Common Core: 7th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : The Number System

Compute the following:  \displaystyle -12 -(-3)-(-4)+5

Possible Answers:

\displaystyle -6

\displaystyle 6

\displaystyle -14

\displaystyle 0

\displaystyle -24

Correct answer:

\displaystyle 0

Explanation:

Convert all the double signs to a single sign before solving. Remember, two minus (negative) signs combine to form a plus (positive) sign, and a plus (positive) sign and a minus (negative) sign combine to form a minus (negative) sign.

\displaystyle -12 -(-3)-(-4)+5

\displaystyle -12+3+4+5=0

Example Question #1 : Describe Situations In Which Opposite Quantities Combine To Make 0: Ccss.Math.Content.7.Ns.A.1a

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 11+x=0

Possible Answers:

\displaystyle 1

\displaystyle -11

\displaystyle 10

\displaystyle 0

\displaystyle 11

Correct answer:

\displaystyle -11

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 11 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}11+x=0\\ -11\ \ \ \ -11\end{array}}{\\\\x=-11}

Example Question #2 : Describe Situations In Which Opposite Quantities Combine To Make 0: Ccss.Math.Content.7.Ns.A.1a

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 24+x=0

 

Possible Answers:

\displaystyle -24

\displaystyle 24

\displaystyle 20

\displaystyle 0

\displaystyle 1

Correct answer:

\displaystyle -24

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 24 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}24+x=0\\ -24\ \ \ \ -24\end{array}}{\\\\x=-24}

Example Question #1 : The Number System

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 38+x=0

 

Possible Answers:

\displaystyle -38

\displaystyle 32

\displaystyle 0

\displaystyle 38

\displaystyle 1

Correct answer:

\displaystyle -38

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 38 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}38+x=0\\ -38\ \ \ \ -38\end{array}}{\\\\x=-38}

Example Question #1 : The Number System

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 62+x=0

 

Possible Answers:

\displaystyle 1

\displaystyle 60

\displaystyle -62

\displaystyle 0

\displaystyle 62

Correct answer:

\displaystyle -62

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 62 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}62+x=0\\ -62\ \ \ \ -62\end{array}}{\\\\x=-62}

Example Question #2 : The Number System

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 70+x=0

 

Possible Answers:

\displaystyle -10

\displaystyle 0

\displaystyle 70

\displaystyle 1

\displaystyle -70

Correct answer:

\displaystyle -70

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 70 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}70+x=0\\ -70\ \ \ \ -70\end{array}}{\\\\x=-70}

Example Question #2 : The Number System

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 86+x=0

 

Possible Answers:

\displaystyle -1

\displaystyle 0

\displaystyle 86

\displaystyle 1

\displaystyle -86

Correct answer:

\displaystyle -86

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 86 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}86+x=0\\ -86\ \ \ \ -86\end{array}}{\\\\x=-86}

Example Question #5 : Describe Situations In Which Opposite Quantities Combine To Make 0: Ccss.Math.Content.7.Ns.A.1a

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 99+x=0

 

Possible Answers:

\displaystyle -1

\displaystyle -90

\displaystyle -99

\displaystyle 99

\displaystyle 0

Correct answer:

\displaystyle -99

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 99 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}99+x=0\\ -99\ \ \ \ -99\end{array}}{\\\\x=-99}

Example Question #1 : The Number System

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 59+x=0

 

Possible Answers:

\displaystyle 0

\displaystyle 50

\displaystyle 1

\displaystyle -59

\displaystyle 59

Correct answer:

\displaystyle -59

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 59 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}59+x=0\\ -59\ \ \ \ -59\end{array}}{\\\\x=-59}

Example Question #5 : Describe Situations In Which Opposite Quantities Combine To Make 0: Ccss.Math.Content.7.Ns.A.1a

For the equation provided, what value when substituted for \displaystyle x, will equal \displaystyle 0?

\displaystyle 19+x=0

 

Possible Answers:

\displaystyle 0

\displaystyle -19

\displaystyle 19

\displaystyle 1

\displaystyle -1

Correct answer:

\displaystyle -19

Explanation:

In order to answer this question, we can solve for \displaystyle x. When solving for \displaystyle x we need to isolate the \displaystyle x variable on one side of the equation. 

We can subtract \displaystyle 19 to both sides in order to isolate the variable, \displaystyle x.

\displaystyle \frac{\begin{array}[b]{r}19+x=0\\ -19\ \ \ \ -19\end{array}}{\\\\x=-19}

Learning Tools by Varsity Tutors