Common Core: High School - Number and Quantity : Use Matrices to Represent and Manipulate Data: CCSS.Math.Content.HSN-VM.C.6

Study concepts, example questions & explanations for Common Core: High School - Number and Quantity

varsity tutors app store varsity tutors android store

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:10x-4y=7\), and \(\displaystyle 2:-7x+5y=-10\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} 10 & -4 &7 \\ -7& 5& -10 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & -7 &7 \\ -7& 5& -10 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & 5 &7 \\ -7& -4& -10 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & 5 &7 \\ -7& -4& 10 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & 5 &-10 \\ -7& -4& 7 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 10 & -4 &7 \\ -7& 5& -10 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} 10 & -4 &7 \\ -7& 5& -10 \end{bmatrix}\)

Example Question #2 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-20x-8y=9\), and \(\displaystyle 2:-13x+18y=14\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} 20 & -18 &9 \\ -13& 18& 14 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 20 & -8 &9 \\ 13& 18& 14 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -20 & -8 &9 \\ -13& 18& 14 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -20 & -8 &9 \\ -18& 13& 14 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -20 & -9 &18 \\ -13& 8& 14 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -20 & -8 &9 \\ -13& 18& 14 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -20 & -8 &9 \\ -13& 18& 14 \end{bmatrix}\)

Example Question #3 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-15x-3y=-1\), and \(\displaystyle 2:7x-8y=0\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} 15 & 3 &1 \\ 7& 8& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -15 & -3 &-1 \\ 7& -8& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -15 & 3 &1 \\ 7& 8& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 15 & -3 &1 \\ 7& -8& 0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -15 & -3 &0 \\ 7& -8& 0 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -15 & -3 &-1 \\ 7& -8& 0 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -15 & -3 &-1 \\ 7& -8& 0 \end{bmatrix}\)

Example Question #4 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:16x+9y=11\), and \(\displaystyle 2:11x-18y=17\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} 16 & -18 &11 \\ 11& 11& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 16 & -9 &11 \\ -11& -18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 16 & 9 &11 \\ 11& 18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 16 & 9 &11 \\ 11& -18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 16 & 9 &17 \\ 11& -18& 11 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 16 & 9 &11 \\ 11& -18& 17 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} 16 & 9 &11 \\ 11& -18& 17 \end{bmatrix}\)

Example Question #5 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-18x-6y=4\), and \(\displaystyle 2:-4x-7y=15\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -18 & -6 &4 \\ -4& -7& 15\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 18 & -6 &4 \\ -4& 7& 15\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 18 & 6 &4 \\ 4& 7& 15\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -18 & -6 &-4 \\ -4& -7& -15\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -18 & -7 &4 \\ -4& -6& 15\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -18 & -6 &4 \\ -4& -7& 15\end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -18 & -6 &4 \\ -4& -7& 15\end{bmatrix}\)

Example Question #6 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-18x+8y=-9\), and \(\displaystyle 2:8x+6y=11\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -18 & 8 &-9 \\ 8& 6& 11 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 18 & 8 &9 \\ 8& 6& 11 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -18 & 8 &9 \\ 8& 6& 11 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 18 & 8 &-9 \\ 8& 6& 11 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -18 & 6 &-9 \\ 8& 8& 11 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -18 & 8 &-9 \\ 8& 6& 11 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -18 & 8 &-9 \\ 8& 6& 11 \end{bmatrix}\)

Example Question #7 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:11x-15y=16\), and \(\displaystyle 2:-14x+20y=-18\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -11 & -15 &-16 \\ -14& -20& -18\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11 & 15 &16 \\ 14& 20& -18\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11 & -15 &16 \\ -14& 20& -18\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11 & 15 &16 \\ 14& 20& 18\end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 11 & -15 &16 \\ -14& 20& 18\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 11 & -15 &16 \\ -14& 20& -18\end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} 11 & -15 &16 \\ -14& 20& -18\end{bmatrix}\)

Example Question #8 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:19x-8y=-20\), and \(\displaystyle 2:17x+4y=20\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -19 & 8 &20 \\ 17& -4& 20 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 19 & -8 &-20 \\ -17& -4& -20 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 19 & -8 &-20 \\ -17& 4& -20 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 19 & -8 &-20 \\ 17& 4& 20 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -19 & -8 &-20 \\ 17& -4& 20 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} 19 & -8 &-20 \\ 17& 4& 20 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} 19 & -8 &-20 \\ 17& 4& 20 \end{bmatrix}\)

Example Question #1 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-10x+4y=9\), and \(\displaystyle 2:-x+16y=4\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -10 & -4 &9 \\ -1& -16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& -4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -10 & 4 &-9 \\ -1& -16& 4 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -10 & 4 &9 \\ -1& 16& 4 \end{bmatrix}\)

Example Question #1 : Use Matrices To Represent And Manipulate Data: Ccss.Math.Content.Hsn Vm.C.6

Which of the following matrices represents the equations, \(\displaystyle 1:-14x-y=-6\), and \(\displaystyle 2:14x+18y=17\)?

Possible Answers:

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ -14& 18& -17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 14 & 1 &6 \\ 14& 18& 17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ -14& -18& -17 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

Explanation:

To do this problem, all we need to do is put the coefficients for each variable into a matrix. The first column will be x values, 2nd column will be y values, and 3rd column will be what the equations are equal to.

It will look like this

\(\displaystyle \begin{bmatrix} x_1 & y_1 &c_1 \\ x_2& y_2& c_2 \end{bmatrix}\)

 where \(\displaystyle x_1,y_1\),\(\displaystyle x_2,y_2\) are coefficients of \(\displaystyle x\) and \(\displaystyle y\) in the first and second equation respectively. \(\displaystyle c_1, c_2\) refer to what the equations are equal to. So after placing the coefficients and what the equations are equal to in a matrix, it will look like the following.

\(\displaystyle \begin{bmatrix} -14 & -1 &-6 \\ 14& 18& 17 \end{bmatrix}\)

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors