All GRE Subject Test: Biology Resources
Example Questions
Example Question #1 : Organic Chemistry, Biochemistry, And Metabolism
When would it be appropriate to use extraction in order to separate compounds in a solution?
When the compounds have similar molecular weights, but differing polarities.
When the compounds have differing conjugated double bond lengths, but similar molecular weights.
When the compounds have differing molecular weights, but similar solubilities.
When the compounds have similar polarities, but differing solubilities.
When the compounds have similar polarities, but differing solubilities.
Extraction is a useful separation technique when there is a mixture of compounds in a solution that have similar polarities, but different solubilities. The three-step process of extraction can take advantage of different solubilities by introducing the mixture to different acidic and basic conditions.
Example Question #1 : Understanding Separation Techniques
In polymerase chain reaction (PCR), the reaction mixture is heated to approximately 98°C during the first cycling step in the procedure. Which of the following describes the purpose of this step?
Bringing the reaction to the optimal temperature for annealing of the primers to the template
Degradation of non-target sequences within the template
Melting of the DNA template, producing single-stranded DNA to which primers can bind
Solubilizing the dNTPs
Activation of Taq polymerase
Melting of the DNA template, producing single-stranded DNA to which primers can bind
Heating of the reaction to roughly 98°C is required to separate the template DNA strands from one another, thereby producing single strands that can pair to their complementary primer. At this temperature, the hydrogen bonds between base pairs break and the strands separate.
Taq polymerase doesn't require this temperature to be active, non-target sequences are not degraded during PCR, the dNTPs are already soluble, and the optimal annealing temperature for primers is actually much lower than 98°C.
Example Question #2 : Understanding Separation Techniques
Which technique is best suited to determine if a protein is active and able to bind DNA?
Bradford assay
Southern blot
Northern blot
Electrophoretic mobility shift assay (EMSA)
Western blot
Electrophoretic mobility shift assay (EMSA)
In an EMSA, a radiolabeled sequence of DNA that the protein of interest normally binds is incubated with the protein. This mixutre is then run on a non-denaturing gel. If the protein binds the radiolabeled DNA sequence, radioacitivity will be detected towards the top of the gel; however, if it does not bind, the radiolabeled DNA probe alone will run more quickly towards the bottom of the gel.
Example Question #3 : Understanding Separation Techniques
What is the purpose of a electrophoretic mobility supershift assay?
To determine if a certain protein binds a DNA sequence
To determine if two proteins interact with one another
To separate proteins by size
To separate DNA fragments by size
To separate proteins by charge
To determine if a certain protein binds a DNA sequence
The purpose of an electrophoretic mobility supershift assay (EMSA) is to determine if a certain protein binds a DNA sequence. EMSAs determine if a protein is "active", meaning that it is capable of binding its target DNA sequence. In an EMSA, a radiolabelled DNA fragment is incubated with cellular protein lysates, then run on a non-denaturing gel. Any protein-bound DNA fragments will migrate slower than unbound DNA fragments. When performing a supershift, one wants to determine if a specific protein binds a radiolabelled DNA probe by use of an antibody. If the antibody binds the protein-DNA complex, this will migrate even slower than the protein-DNA complex alone.
Example Question #4 : Understanding Separation Techniques
Capillary electrophoresis instrumentation involves which of the following components?
Detector
Buffer system
Polymer
Positive and negative electrodes
All of these
All of these
A buffer system is required in a capillary electrophoresis system in order to supply the ions necessary to carry the electric current. Ions become depleted quickly and the buffer system will need to be replenished regularly.
The positive and negative electrodes, in combination with a high voltage power supply create the current. The source of the sample and destination of the sample will have opposite charged electrodes. Migration of the analytes through the polymer filled capillary will depend on the applied electric field and their size.
The detector of a capillary electrophoresis system will vary based on the instrumentation type. It is used to detect the size of the molecules and the speed at which they move through the matrix. Sizing methods and databases are then used for analysis.
Polymer serves as the separation matrix of the system. The viscosity of the polymer in combination with the electroosmotic flow of they system will separate molecules based on their size.
Example Question #5 : Understanding Separation Techniques
Compared to slab gel electrophoresis, which is an advantage of capillary electrophoresis?
Data collection can be done in real-time
Automatable sample loading
Less sample consumption
All of these
Reproducibility of matrix viscosity
All of these
Capillary electrophoresis allows for better reproducibility of liquid polymer throughout a capillary compared to slab gels. Much of the time gels are manually poured and uneven gel thickness can occur.
Real time data viewing is possible on a capillary electrophoresis instrument's system computer.
Higher sample consumption is common with slab gels. More sample is required to be loaded in each lane. If retesting is necessary, the sample must be prepared and loaded into a new gel. Very small quantities of sample are consumed in the injection step into the capillary. Samples can be easily retested through reinjection from the original sample vial.
Capillary electrophoresis has the possibility of being a completely automated process, including automated sample loading. This saves analyst time during sample prep, injection, and separation. Gels require manual sample loading and some instruments require gel handling for scanning or photography after the electrophoresis process.
Example Question #1 : Other Lab Techniques
Which of the following is a method for sample introduction into a capillary electrophoresis system?
Hydrodynamic injection
All of these
Siphoning
Electrokinetic injection
Pressure injection
All of these
All of these methods require the immersion of the capillary end into the sample for introduction into the capillary electrophoresis system.
Certified Tutor
Certified Tutor