All GRE Subject Test: Physics Resources
Example Questions
Example Question #4 : Special Relativity
A relativistic particle of mass m has a total energy 37 times its rest energy. What is the momentum of the particle, in units of mc?
52
37
144
21
98
37
The total energy E of a relativistic particle is related to its rest mass energy Eo by:
Where gamma is related to the momentum by:
Combining the equations and solving for p, we get:
Which, in the units specified, is 37.
Example Question #5 : Special Relativity
A particle of mass m traveling at a relativistic speed has a momentum of 50 mc. What is the total energy E of the particle, expressed in units of the rest mass energy Eo?
For a relativistic particle, momentum is given by:
from which we can solve for gamma:
Total energy of a relativistic particle is given by:
Example Question #6 : Special Relativity
The rest mass energy of a particle with mass is one quarter of its total energy . What is the of the particle's momentum, in units of ?
The question tells us:
Where the rest mass energy of a particle is:
Using the equation for the total energy of a particle, we can substitute:
Solving this for , we find:
Which, in units of mc, gives us the correct answer.
Example Question #7 : Special Relativity
The relativistic momentum of a particle with mass is . What is the total energy of the particle, given in units of the rest mass energy ?
The total energy of a relativistic particle is given by:
Substituting the momentum, we get:
Because the rest mass energy of a particle is given by:
The total energy is:
Example Question #8 : Special Relativity
A scientist measures the spectrum of relativistic jet emitted from a black hole. He finds that the a particular spectral line, which has a stationary wavelength of 212.5 nm, has a Doppler shifted wavelength of 643.7 nm. What is the radial velocity of the relativistic jet?
The relativistic Doppler shift equation is given by:
Where is defined as:
Because the stationary wavelength is shorter than the moving wavelength, the object must be receding from the Earth, eliminating two answers.
The speed of light is approximately , so is not a possible answer.
Making the approximation that
Combining this with the first equation:
From beta, we can find the velocity:
Example Question #1 : Energy And Momentum
A particle in an accelerator has a total energy and a relativistic momentum . What is the rest mass of the particle, in units of ?
The total energy of a relativistic particle is given by:
Solving for the rest mass :
Which, in the units specified, gives the answer 3.
Certified Tutor