High School Math : Integrals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Finding Integrals

Evaluate:

\displaystyle \int_{1}^{e^{100}} \frac{1}{x}dx

Possible Answers:

\displaystyle \frac{100}{e}

\displaystyle \frac{1}{100}

\displaystyle 100e

\displaystyle \ln 100

\displaystyle 100

Correct answer:

\displaystyle 100

Explanation:

\displaystyle \int_{1}^{e^{100}} \frac{dx}{x} = \ln e^{100} - \ln 1 = 100-0 = 100 

Example Question #1 : Finding Definite Integrals

Find  \displaystyle \int_{0}^{\pi} (\cos^{2}x+\sin^{2}x)dx

Possible Answers:

\displaystyle 2\pi

\displaystyle 1

\displaystyle \pi

\displaystyle 3

Correct answer:

\displaystyle \pi

Explanation:

This is most easily solved by recognizing that \displaystyle \sin^{2}x+\cos^{2}x=1.  

Example Question #2 : Finding Definite Integrals

\displaystyle \int_{\pi}^{2\pi}\sin(2x){\mathrm{d} x}=?

Possible Answers:

\displaystyle 2

\displaystyle 0

\displaystyle \pi

\displaystyle 1

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle 0

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=\sin(2x), we can't use the power rule. Instead we end up with: 

\displaystyle \int f(x){\mathrm{d} x}=\int \sin(2x){\mathrm{d} x}=\frac{-\cos(2x)}{2}+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\frac{-\cos(2b)}{2}+c)-(\frac{-\cos(2a)}{2}+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{\pi}^{2\pi}f(x){\mathrm{d} x}=(\frac{-\cos(4\pi)}{2})-(\frac{-\cos(2\pi)}{2})

\displaystyle \int_{\pi}^{2\pi}f(x){\mathrm{d} x}=(\frac{-1}{2})-(\frac{-1}{2})

\displaystyle \int_{\pi}^{2\pi}f(x){\mathrm{d} x}=0

Example Question #4 : Finding Integrals

\displaystyle \int_{2}^{4}x^2{\mathrm{d} x}=?

Possible Answers:

\displaystyle 18\frac{2}{3}

Correct answer:

\displaystyle 18\frac{2}{3}

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=x^2, we can use the reverse power rule to find the indefinite integral or anti-derivative of our function:

\displaystyle \int (x^2){\mathrm{d} x}=\frac{1}{3}x^3+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\frac{1}{3}b^3+c)-(\frac{1}{3}a^3+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{2}^{4}f(x){\mathrm{d} x}=(\frac{1}{3}\cdot 4^3)-(\frac{1}{3}\cdot 8^3)

\displaystyle \int_{2}^{4}f(x){\mathrm{d} x}=(\frac{64}{3})-(\frac{8}{3})

\displaystyle \int_{2}^{4}f(x){\mathrm{d} x}=\frac{56}{3}=18\frac{2}{3}

Example Question #2187 : High School Math

\displaystyle \int_{1}^{2}\frac{1}{x}{\mathrm{d} x}=?

Possible Answers:

\displaystyle 1.2

\displaystyle 0.81

\displaystyle 0.75

\displaystyle 0.30

\displaystyle 0.69

Correct answer:

\displaystyle 0.69

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

As it turns out, since our \displaystyle f(x)=\frac{1}{x}, the power rule really doesn't help us. \displaystyle \frac{1}{x} has a special anti derivative: \displaystyle \ln{x}.

\displaystyle \int \frac{1}{x}{\mathrm{d} x}=\ln{x}+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\ln{b}+c)-(\ln{a}+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{1}^{2}f(x){\mathrm{d} x}=(\ln(2))-(\ln(1))

\displaystyle \int_{1}^{2}f(x){\mathrm{d} x}=(\ln(2))-(0)

\displaystyle \int_{1}^{2}f(x){\mathrm{d} x}\approx 0.69

Example Question #5 : Finding Definite Integrals

\displaystyle \int_{3}^{40}e^x{\mathrm{d} x}=?

Possible Answers:

\displaystyle 2.35\cdot 10^{19}

\displaystyle 2.35\cdot 10^{9}

\displaystyle 1.05\cdot 10^{17}

\displaystyle 2.35\cdot 10^{15}

\displaystyle 2.35\cdot 10^{17}

Correct answer:

\displaystyle 2.35\cdot 10^{17}

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

As it turns out, since our \displaystyle f(x)=e^x, the power rule really doesn't help us. \displaystyle e^x is the only function that is it's OWN anti-derivative. That means we're still going to be working with \displaystyle e^x.

\displaystyle \int e^x{\mathrm{d} x}=e^x+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(e^b+c)-(e^a+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{3}^{40}f(x){\mathrm{d} x}=(e^{40})-(e^3)

\displaystyle \int_{3}^{40}f(x){\mathrm{d} x}=(2.35\cdot 10^{17})-(20.09)

Because \displaystyle e^3 is so small in comparison to the value we got for \displaystyle e^{40}, our answer will end up being \displaystyle 2.35\cdot 10^{17}

Example Question #6 : Finding Definite Integrals

\displaystyle \int_2^6(5x^2+3x+2){\mathrm{d} x}=?

Possible Answers:

Correct answer:

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=5x^2+3x+2, we can use the power rule for all of the terms involved to find our anti-derivative:

\displaystyle \int (5x^2+3x+2){\mathrm{d} x}=\frac{5}{3}x^3+\frac{3}{2}x^2+2x+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\frac{5}{3}b^3+\frac{3}{2}b^2+2b+c)-(\frac{5}{3}a^3+\frac{3}{2}a^2+2a+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{2}^{6}f(x){\mathrm{d} x}=(\frac{5}{3}(6)^3+\frac{3}{2}(6)^2+2(6))-(\frac{5}{3}(2)^3+\frac{3}{2}(2)^2+2(2))

\displaystyle \int_{2}^{6}f(x){\mathrm{d} x}=(360+54+12)-(\frac{40}{3}+6+4)

Example Question #1 : Integrals

\displaystyle \int_3^5\frac{x+3}{x}{\mathrm{d} x}=?

Possible Answers:

\displaystyle 6.12

\displaystyle 5.67

\displaystyle 1.33

\displaystyle 3.21

\displaystyle 3.53

Correct answer:

\displaystyle 3.53

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=\frac{x+3}{x}, we can't use the power rule. We have to break up the quotient into separate parts:

 

\displaystyle f(x)=\frac{x}{x}+\frac{3}{x}=1+\frac{3}{x}.

The integral of 1 should be no problem, but the other half is a bit more tricky:

\displaystyle \int\frac{3}{x}{\mathrm{d} x} is really the same as \displaystyle 3\int\frac{1}{x}{\mathrm{d} x}. Since \displaystyle \int\frac{1}{x}{\mathrm{d} x}=\ln{x},  \displaystyle \int\frac{3}{x}{\mathrm{d} x}=3\ln{x}.

Therefore:

\displaystyle \int\frac{x+3}{x}{\mathrm{d} x}=x+3\ln{x}+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(b+3\ln{b}+c)-(a+3\ln{a}+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{3}^{5}f(x){\mathrm{d} x}=(5+3\ln{5})-(3+3\ln{3})

\displaystyle \int_{3}^{5}f(x){\mathrm{d} x}=(9.83)-(6.30)

\displaystyle \int_{3}^{5}f(x){\mathrm{d} x}\approx 3.53

Example Question #8 : Finding Definite Integrals

\displaystyle \int_2^5\sqrt{x}\text{ }{\mathrm{d} x}=?

Possible Answers:

\displaystyle 2.59

\displaystyle 7.52

\displaystyle 9.34

\displaystyle 5.56

\displaystyle 1.89

Correct answer:

\displaystyle 5.56

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=\sqrt{x}, we can use the power rule, if we turn it into an exponent: 

\displaystyle f(x)=\sqrt{x}=x^{\frac{1}{2}}

This means that:

\displaystyle \int f(x){\mathrm{d} x}=\int x^\frac{1}{2}{\mathrm{d} x}=\frac{2}{3}x^\frac{3}{2}+c

 

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(\frac{2}{3}b^\frac{3}{2}+c)-(\frac{2}{3}a^\frac{3}{2}+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{2}^{5}f(x){\mathrm{d} x}=(\frac{2}{3}(5)^\frac{3}{2})-(\frac{2}{3}(2)^\frac{3}{2})

\displaystyle \int_{2}^{5}f(x){\mathrm{d} x}\approx(7.45)-(1.89)

\displaystyle \int_{2}^{5}f(x){\mathrm{d} x}\approx5.56

Example Question #33 : Calculus Ii — Integrals

\displaystyle \int_{12}^{15}\ln(x){\mathrm{d} x}=?

Possible Answers:

\displaystyle 8.7

\displaystyle 7.8

\displaystyle 71.12

\displaystyle 3.9

\displaystyle 10.8

Correct answer:

\displaystyle 7.8

Explanation:

Remember the fundamental theorem of calculus!

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=\int f(b){\mathrm{d} x}-\int f(a){\mathrm{d} x}

Since our \displaystyle f(x)=\ln(x), we can't use the power rule, as it has a special antiderivative:

\displaystyle \int f(x){\mathrm{d} x}=\int \ln(x){\mathrm{d} x}=x\ln(x)-x+c

Remember to include the \displaystyle + c for any anti-derivative or integral taken!

Now we can plug that equation into our FToC equation:

\displaystyle \int_{a}^{b}f(x){\mathrm{d} x}=(b\ln(b)-b+c)-(a\ln(a)-a+c)

Notice that the c's cancel out. Plug in the given values for a and b and solve:

\displaystyle \int_{12}^{15}f(x){\mathrm{d} x}=(15\ln(15)-15)-(12\ln(12)-12)

\displaystyle \int_{12}^{15}f(x){\mathrm{d} x}\approx(25.62)-(17.82)

\displaystyle \int_{12}^{15}f(x){\mathrm{d} x}\approx7.8

Learning Tools by Varsity Tutors