Intermediate Geometry : Lines

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Lines

What is the midpoint between \displaystyle (-1,3) and \displaystyle (7,-5)?

Possible Answers:

\displaystyle (4,-4)

\displaystyle (4,-1)

\displaystyle (2,2)

\displaystyle (3,0)

\displaystyle (3,-1)

Correct answer:

\displaystyle (3,-1)

Explanation:

The midpoint is given by taking the mean, or average, of the \displaystyle x and \displaystyle y coordinates separately.

Let \displaystyle P_{1}=\left ( 7,5 \right ) and \displaystyle P_{2} = \left (-1,3 \right )

So the midpoint formula becomes \displaystyle \frac{x_{1}\ +\ x_{2}}{2}= \frac{7-1}{2}=3 and \displaystyle \frac{y_{1}+y_{2}}{2}= \frac{-5 +3}{2}=-1

So the midpoint is \displaystyle (3,-1)

Example Question #2 : Lines

What is the midpoint of a line segment connecting the points \displaystyle \left ( -5,6 \right ) and \displaystyle \left ( -3,2 \right )\ ?

Possible Answers:

\displaystyle \left ( -4,4 \right )

\displaystyle \left ( -4,2 \right )

\displaystyle \left ( -1,2 \right )

\displaystyle \left ( -1,4 \right )

Correct answer:

\displaystyle \left ( -4,4 \right )

Explanation:

Use the midpoint formula:

\displaystyle (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})=midpoint

\displaystyle (\frac{-5+(-3)}{2}, \frac{6+2}{2})=(\frac{-8}{2}, \frac{8}{2})=(-4,4)

Example Question #1 : How To Find The Midpoint Of A Line Segment

Given two points \displaystyle \left ( -3,-3 \right ) and \displaystyle \left ( -1,1 \right ) and a line segment that connects the two.

What is the midpoint of the line segment? Addtionally, what is the length of the line segment?

Possible Answers:

Midpoint: \displaystyle \left ( -1,-2 \right )

Length: \displaystyle 8

Midpoint: \displaystyle \left ( -1,-1 \right )

Length: \displaystyle 4\sqrt3

Midpoint: \displaystyle \left ( -1,-2 \right )

Length: \displaystyle 2\sqrt5

Midpoint: \displaystyle \left ( -2,-1 \right )

Length: \displaystyle \sqrt5

Midpoint: \displaystyle \left ( -2,-1 \right )

Length: \displaystyle 2\sqrt{5}

Correct answer:

Midpoint: \displaystyle \left ( -2,-1 \right )

Length: \displaystyle 2\sqrt{5}

Explanation:

The midpoint formula is as follows:

\displaystyle midpoint = (\frac{x_1 +x_2}{2},\frac{y_1+y_2}{2})

This makes sense; it is as simple as the average of the \displaystyle x and \displaystyle y components of each point.

For this problem, \displaystyle x_1=-3,x_2=-1,y_1=-3,and\: y_2=1.

So the midpoint is \displaystyle \left ( -2,-1 \right )

 

The distance formula is as follows:

\displaystyle distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

The order you put the first and second components of each point does NOT matter, when a positive or negative number is squared, it will always come out positive.        

\displaystyle (2)^2=4\; and\; (-4)^2=16

 

So the distance is \displaystyle \sqrt{(-3+1)^2+(-3-1)^2} =\sqrt{4+16}=\sqrt{20}=2\sqrt{5}

Example Question #1 : How To Find The Midpoint Of A Line Segment

Find the midpoint of a line segment going from \displaystyle (-2,-9) to \displaystyle (-6,-1).

Possible Answers:

\displaystyle (3,5)

\displaystyle (-1,3)

\displaystyle (-4,-5)

\displaystyle (-4,4)

\displaystyle (2,4)

Correct answer:

\displaystyle (-4,-5)

Explanation:

To find the midpoint of a line segment, you must find the mean of the x values and the mean of the y values.

Our x values are \displaystyle -2 and \displaystyle -6 to find their mean, we do \displaystyle (-2+-6)/2=-4.

Our y values are \displaystyle -9 and \displaystyle -1, so our mean is \displaystyle (-9+-1)/2=-5. Therefore, our midpoint must be \displaystyle (-4,-5).

Example Question #1 : Midpoint Formula

Find the coordinate of the midpoint of the line segment connecting the pair of points

\displaystyle (2, 2) and \displaystyle (4, 12).

Possible Answers:

\displaystyle (2, 7)

\displaystyle (1, 5)

Cannot be determined

\displaystyle (3, 7)

Correct answer:

\displaystyle (3, 7)

Explanation:

The coordinate of the midpoint of the line segment connecting a pair of points is

\displaystyle \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)

So for the pair of points \displaystyle (x_1,y_1)=(2,2) and \displaystyle (x_2,y_2)=(4,12),

we get:

\displaystyle \left(\frac{2+4}{2}, \frac{2+12}{2}\right)=(3, 7)

Example Question #1 : Midpoint Formula

Find the coordinate of the midpoint of the line segment connecting the pair of points

\displaystyle (0, 0) and \displaystyle (8, 0).

Possible Answers:

\displaystyle (0, 4))

\displaystyle (4, 0)

\displaystyle (-4, 0)

Cannot be determined

Correct answer:

\displaystyle (4, 0)

Explanation:

The coordinate of the midpoint of the line segment connecting a pair of points is

\displaystyle \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right).

So for the pair of points \displaystyle (x_1,y_1)=(0, 0) and \displaystyle (x_2,y_2)=(8, 0)

we get,

\displaystyle \left(\frac{0+8}{2}, \frac{0+0}{2}\right)=(4, 0)

Example Question #1 : Lines

A line extends from the origin to \displaystyle \small (14, -2). What is its midpoint?

Possible Answers:

\displaystyle \small (7,-1)

\displaystyle \small (28, -4)

\displaystyle \small (7, 1 )

\displaystyle \small (1,-7)

\displaystyle \small (-7, -1)

Correct answer:

\displaystyle \small (7,-1)

Explanation:

The origin is the point \displaystyle \small (0,0). We can use the regular midpoint formula with \displaystyle \small (0,0) as \displaystyle \small (x_{1}, y_{1}) and the given point \displaystyle \small (14, -2) as \displaystyle \small (x_{2}, y_{2}):

\displaystyle \small (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})

\displaystyle \small (\frac{0+14}{2} , \frac{0+-2}{2})

\displaystyle \small (\frac{14}{2}, \frac{-2}{2}) = (7, -1)

 

Note that since the first point is the origin, we're averaging these points with 0, or in other words just dividing by 2.

Example Question #8 : Midpoint Formula

There is a line segment between the two points (5, 10) and (3, 6).  What formula will give you the correct mid-point of the line segment?

Possible Answers:

\displaystyle \Big( {5-2} \; ,{10-2} \Big )

\displaystyle \Big( \frac{5+10}{2} \; , \frac{3+6}{2} \Big )

\displaystyle \Big( \frac{5-3}{2} \; , \frac{10-6}{2} \Big )

\displaystyle \Big( \frac{5-10}{2} \; , \frac{3-6}{2} \Big )

\displaystyle \Big( \frac{5+3}{2} \; , \frac{10+6}{2} \Big )

Correct answer:

\displaystyle \Big( \frac{5+3}{2} \; , \frac{10+6}{2} \Big )

Explanation:

To find the mid-point given two points on the coordinate plane you are basically finding the average of the x-values and the average of the y-values.  To do this follow the formula below:

\displaystyle \Big( \frac{x_{1}+ x_{2}}{2} \; , \frac{y_{1}+y_{2}}{2} \Big )

With our points this gives:

\displaystyle \Big( \frac{5+3}{2} \; , \frac{10+6}{2} \Big )

Example Question #1 : How To Find The Midpoint Of A Line Segment

A line has endpoints at (4,5) and (-6,8). Where is its midpoint?

Possible Answers:

\displaystyle \left(1,\frac{13}{2}\right)

\displaystyle \left(\frac{-13}{2},-1\right)

\displaystyle \left(\frac{-13}{2},1\right)

\displaystyle \left(-1,\frac{13}{2}\right)

\displaystyle \left(\frac{13}{2},-1\right)

Correct answer:

\displaystyle \left(-1,\frac{13}{2}\right)

Explanation:

The midpoint is the point that is equidistant from each endpoint point.

We find it using a formula that computes the average of the x and y coordinates.

\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)

\displaystyle \left(\frac{4+(-6)}{2},\frac{5+8}{2}\right)

\displaystyle \left(\frac{-2}{2},\frac{13}{2}\right)

\displaystyle \mathbf{\left(-1,\frac{13}{2}\right)}

Example Question #1 : Lines

A line segment has the endpoints \displaystyle (2, 4) and \displaystyle (1, 8). What is the midpoint of this line segment?

Possible Answers:

\displaystyle (\frac{1}{2},12)

\displaystyle (\frac{3}{2},6)

\displaystyle (6, 3)

\displaystyle (\frac{5}{2},2)

Correct answer:

\displaystyle (\frac{3}{2},6)

Explanation:

Recall the formula for finding a midpoint of a line segment:

\displaystyle \text{Midpoint}=(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})

The coordinates of the midpoint is just the average of the x-coordinates and the average of the y-coordinates.

Plug in the given points to find the midpoint of the line segment.

\displaystyle \text{Midpoint}=(\frac{2+1}{2}, \frac{4+8}{2})=(\frac{3}{2}, 6)

Learning Tools by Varsity Tutors