Intermediate Geometry : Spheres

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Spheres

A sphere has a circumference of \displaystyle 8\pi, what is its volume?

Possible Answers:

\displaystyle \frac{2048\pi}{3}

\displaystyle \frac{64\pi}{3}

\displaystyle 48\pi

\displaystyle \frac{256\pi}{3}

\displaystyle \frac{196\pi}{3}

Correct answer:

\displaystyle \frac{256\pi}{3}

Explanation:

The circumference is given by \displaystyle 2\pi r which yields a radius of 4.  The volume is given by \displaystyle \frac{4}{3}\pi r^{3}

Example Question #2 : How To Find The Volume Of A Sphere

Possible Answers:

\displaystyle 98\pi\; cm^3

\displaystyle \frac{1256}{3}\; \pi \; cm^3

\displaystyle \frac{1372}{3}\; \pi \; cm^3

\displaystyle \frac{218}{3}\pi\; cm^3

\displaystyle \frac{196}{3}\pi\; cm^3

Correct answer:

\displaystyle \frac{1372}{3}\; \pi \; cm^3

Explanation:

65473887969\displaystyle \frac{4}{3}\cdot \pi \cdot r^3\rightarrow \frac{4}{3}\cdot \pi \cdot (7)^3

Simplified, it is \displaystyle \frac{1372}{3}\; \pi \; cm^3

Example Question #1 : Spheres

What is the volume of a sphere with a diameter of 6 in?

Possible Answers:

\displaystyle 36\pi\ in^{3}

\displaystyle 108\pi\ in^{3}

\displaystyle 72\pi\ in^{3}

\displaystyle 216\pi\ in^{3}

\displaystyle 288\pi\ in^{3}

Correct answer:

\displaystyle 36\pi\ in^{3}

Explanation:

The formula for the volume of a sphere is:

\displaystyle V=\frac{4}{3}\pi r^{3}

where \displaystyle r = radius.  The diameter is 6 in, so the radius will be 3 in. 

Example Question #3 : Spheres

The circumference of a sphere is \displaystyle 27 \pi \:cm. What is the sphere's volume?

Possible Answers:

\displaystyle 10,306\:cm^3

\displaystyle 10,308\:cm^3

\displaystyle 9,983\:cm^3

\displaystyle 10,403\:cm^3

\displaystyle 82,488\:cm^3

Correct answer:

\displaystyle 10,306\:cm^3

Explanation:

The formula to find the volume of a sphere is: \displaystyle V=\frac{4}{3} \cdot \pi \cdot r^3

Finding the volume is simple. All that we need is the radius! 

The only information the problem provides is the circumference. In order to find the radius, we have to think how circumference relates to radius.

Since the equation for circumference is \displaystyle C=\pi \cdot d, where d stands for diameter, and radius is half of the diameter, the two have diameter in common. 

The first step in solving this problem is to determine the diameter from the circumference:

\displaystyle C= \pi \cdot d

\displaystyle 27 \cdot \pi = \pi \cdot d

\displaystyle \frac{27 \cdot \pi}{ \pi} = \frac{\pi \cdot d}{\pi}

\displaystyle 27 = d

Because the diameter is \displaystyle 27\:cm, the radius must be \displaystyle 13.5\:cm

Now we are ready to solve for the volume after substituting in our \displaystyle r value.

\displaystyle V= \frac{4}{3} \cdot \pi \cdot (13.5)^3

\displaystyle V= \frac{4}{3} \cdot \pi \cdot (2,460.375)

\displaystyle V = 3280.5 \cdot \pi

\displaystyle V =10,305.99 \approx10,306\:cm^3

Example Question #2 : Spheres

A cube with a side length of 20 inches has a sphere inscribed within. What is the volume of the sphere?

Possible Answers:

\displaystyle V=3,330\hspace{1mm}in^3

\displaystyle V=4,189\hspace{1mm}in^3

\displaystyle V=5,239\hspace{1mm}in^3

\displaystyle V=1,509\hspace{1mm}in^3

\displaystyle V=2,500\hspace{1mm}in^3

Correct answer:

\displaystyle V=4,189\hspace{1mm}in^3

Explanation:

The cube has a side length of 20 inches. Since the sphere is inscribed within the cube its diameter measures 20 inches; the radius will be 10 inches.

The volume of a sphere is given by 

\displaystyle V=\frac{4}{3}\pi r^3.

\displaystyle V=\frac{4}{3}\pi (10)^3=\mathbf{4,189\hspace{1mm}in^3}

Example Question #2 : Spheres

A sphere is cut in half as shown by the figure below.

1

If the radius of the sphere is \displaystyle 2, find the volume of the figure.

Possible Answers:

\displaystyle 16.30

\displaystyle 16.76

\displaystyle 18.55

\displaystyle 15.09

Correct answer:

\displaystyle 16.76

Explanation:

Recall how to find the volume of a sphere:

\displaystyle \text{Volume of Sphere}=\frac{4}{3}\pi\times\text{radius}^3

Now since we only have half a sphere, divide the volume by \displaystyle 2.

\displaystyle \text{Volume of Figure}=\frac{1}{2}(\frac{4}{3}\pi\times\text{radius})^2

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi\times\text{radius}^3

Plug in the given radius to find the volume of the figure.

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi(2)^3=\frac{16}{3}\pi=16.76

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #4 : Spheres

A sphere is cut in half as shown by the figure below.

1

If the radius of the sphere is \displaystyle 3, what is the volume of the figure?

Possible Answers:

\displaystyle 55.08

\displaystyle 58.63

\displaystyle 51.18

\displaystyle 56.55

Correct answer:

\displaystyle 56.55

Explanation:

Recall how to find the volume of a sphere:

\displaystyle \text{Volume of Sphere}=\frac{4}{3}\pi\times\text{radius}^3

Now since we only have half a sphere, divide the volume by \displaystyle 2.

\displaystyle \text{Volume of Figure}=\frac{1}{2}(\frac{4}{3}\pi\times\text{radius})^2

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi\times\text{radius}^3

Plug in the given radius to find the volume of the figure.

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi(3)^3=18\pi=56.55

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #242 : Solid Geometry

A sphere is cut in half as shown by the figure below.

1

If the radius of the sphere is \displaystyle 4, what is the volume of the figure?

Possible Answers:

\displaystyle 134.04

\displaystyle 151.03

\displaystyle 144.07

\displaystyle 125.09

Correct answer:

\displaystyle 134.04

Explanation:

Recall how to find the volume of a sphere:

\displaystyle \text{Volume of Sphere}=\frac{4}{3}\pi\times\text{radius}^3

Now since we only have half a sphere, divide the volume by \displaystyle 2.

\displaystyle \text{Volume of Figure}=\frac{1}{2}(\frac{4}{3}\pi\times\text{radius})^2

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi\times\text{radius}^3

Plug in the given radius to find the volume of the figure.

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi(4)^3=\frac{128}{3}\pi=134.04

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #9 : How To Find The Volume Of A Sphere

A sphere is cut in half as shown by the figure below.

1

If the radius of the sphere is \displaystyle \frac{1}{2}, what is the volume of the figure?

Possible Answers:

\displaystyle 0.26

\displaystyle 0.36

\displaystyle 0.16

\displaystyle 0.46

Correct answer:

\displaystyle 0.26

Explanation:

Recall how to find the volume of a sphere:

\displaystyle \text{Volume of Sphere}=\frac{4}{3}\pi\times\text{radius}^3

Now since we only have half a sphere, divide the volume by \displaystyle 2.

\displaystyle \text{Volume of Figure}=\frac{1}{2}(\frac{4}{3}\pi\times\text{radius})^2

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi\times\text{radius}^3

Plug in the given radius to find the volume of the figure.

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi(\frac{1}{2})^3=\frac{1}{12}\pi=0.26

Make sure to round to \displaystyle 2 places after the decimal.

Example Question #4 : Spheres

A sphere is cut in half as shown by the figure below.

1

If the radius of the sphere is \displaystyle 5, what is the volume of the figure?

Possible Answers:

\displaystyle 288.09

\displaystyle 230.36

\displaystyle 212.20

\displaystyle 261.80

Correct answer:

\displaystyle 261.80

Explanation:

Recall how to find the volume of a sphere:

\displaystyle \text{Volume of Sphere}=\frac{4}{3}\pi\times\text{radius}^3

Now since we only have half a sphere, divide the volume by \displaystyle 2.

\displaystyle \text{Volume of Figure}=\frac{1}{2}(\frac{4}{3}\pi\times\text{radius})^2

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi\times\text{radius}^3

Plug in the given radius to find the volume of the figure.

\displaystyle \text{Volume of Figure}=\frac{2}{3}\pi(5)^3=\frac{250}{3}\pi=261.80

Make sure to round to \displaystyle 2 places after the decimal.

Learning Tools by Varsity Tutors