SAT Math : Basic Squaring / Square Roots

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Factoring And Simplifying Square Roots

Solve for \dpi{100} x:

x\sqrt{45}+x\sqrt{72}=\sqrt{18}\displaystyle x\sqrt{45}+x\sqrt{72}=\sqrt{18}

Possible Answers:

x=\sqrt{9}\displaystyle x=\sqrt{9}

x=\frac{\sqrt{2}}{\sqrt{5}}+\frac{1}{2}\displaystyle x=\frac{\sqrt{2}}{\sqrt{5}}+\frac{1}{2}

x=3\displaystyle x=3

x=\frac{\sqrt{5}}{\sqrt{2}}+2\displaystyle x=\frac{\sqrt{5}}{\sqrt{2}}+2

x=\frac{\sqrt{2}}{\sqrt{5}+2\sqrt{2}}\displaystyle x=\frac{\sqrt{2}}{\sqrt{5}+2\sqrt{2}}

Correct answer:

x=\frac{\sqrt{2}}{\sqrt{5}+2\sqrt{2}}\displaystyle x=\frac{\sqrt{2}}{\sqrt{5}+2\sqrt{2}}

Explanation:

x\sqrt{45}+x\sqrt{72}=\sqrt{18}\displaystyle x\sqrt{45}+x\sqrt{72}=\sqrt{18}

Notice how all of the quantities in square roots are divisible by 9

x\sqrt{9\times 5}+x\sqrt{9\times 8}=\sqrt{9\times 2}\displaystyle x\sqrt{9\times 5}+x\sqrt{9\times 8}=\sqrt{9\times 2}

x\sqrt{9}\sqrt{5}+x\sqrt{9}\sqrt{4\times 2}=\sqrt{9}\sqrt{2}\displaystyle x\sqrt{9}\sqrt{5}+x\sqrt{9}\sqrt{4\times 2}=\sqrt{9}\sqrt{2}

3x\sqrt{5}+3x\sqrt{4}\sqrt{2}=3\sqrt{2}\displaystyle 3x\sqrt{5}+3x\sqrt{4}\sqrt{2}=3\sqrt{2}

3x\sqrt{5}+6x\sqrt{2}=3\sqrt{2}\displaystyle 3x\sqrt{5}+6x\sqrt{2}=3\sqrt{2}

x(3\sqrt{5}+6\sqrt{2})=3\sqrt{2}\displaystyle x(3\sqrt{5}+6\sqrt{2})=3\sqrt{2}

x=\frac{3\sqrt{2}}{3\sqrt{5}+6\sqrt{2}}\displaystyle x=\frac{3\sqrt{2}}{3\sqrt{5}+6\sqrt{2}}

Simplifying, this becomes

x=\frac{\sqrt{2}}{\sqrt{5}+2\sqrt{2}}\displaystyle x=\frac{\sqrt{2}}{\sqrt{5}+2\sqrt{2}}

Example Question #2 : Basic Squaring / Square Roots

Solve for \displaystyle x:

\displaystyle x\sqrt{72}+x\sqrt{108}=12

Possible Answers:

\displaystyle x=\frac{3}{\sqrt{2}+\sqrt{3}}

\displaystyle x=\frac{3}{\sqrt{5}+\sqrt{3}}

\displaystyle x=\frac{2}{\sqrt{2}+\sqrt{3}}

\displaystyle x=\frac{2}{\sqrt{6}+\sqrt{7}}

\displaystyle x=\frac{2}{\sqrt{3}+\sqrt{6}}

Correct answer:

\displaystyle x=\frac{2}{\sqrt{2}+\sqrt{3}}

Explanation:

\displaystyle x\sqrt{72}+x\sqrt{108}=12

Note that all of the square root terms share a common factor of 36, which itself is a square of 6:

\displaystyle x\sqrt{36\times 2}+x\sqrt{36\times 3}=12

\displaystyle 6x\sqrt{2}+6x\sqrt{3}=12

 

Factoring \displaystyle 6x from both terms on the left side of the equation:

 

\displaystyle 6x(\sqrt{2}+\sqrt{3})=12

\displaystyle 6x=\frac{12}{\sqrt{2}+\sqrt{3}}

\displaystyle x=\frac{2}{\sqrt{2}+\sqrt{3}}

 

Example Question #2 : Basic Squaring / Square Roots

Solve for \displaystyle x:

\displaystyle 2x\sqrt{12}+3x\sqrt{28}=18

Possible Answers:

\displaystyle x=\frac{3}{2\sqrt{7}+3\sqrt{3}}

\displaystyle x=\frac{3}{9\sqrt{2}+3\sqrt{7}}

\displaystyle x=\frac{9}{7\sqrt{2}+3\sqrt{5}}

\displaystyle x=\frac{9}{3\sqrt{2}+7\sqrt{3}}

\displaystyle x=\frac{9}{2\sqrt{3}+3\sqrt{7}}

Correct answer:

\displaystyle x=\frac{9}{2\sqrt{3}+3\sqrt{7}}

Explanation:

\displaystyle 2x\sqrt{12}+3x\sqrt{28}=18

Note that both \displaystyle \sqrt{12} and \displaystyle \sqrt{28} have a common factor of \displaystyle 4 and \displaystyle 4 is a perfect square:

 

\displaystyle 2x\sqrt{4\times 3}+3x\sqrt{4\times 7}=18

\displaystyle 2x\cdot2 \sqrt3 +3x\cdot2\sqrt7=18

\displaystyle 4x\sqrt{3}+6x\sqrt{7}=18

From here, we can factor \displaystyle 2x out of both terms on the lefthand side 

\displaystyle 2x(2\sqrt{3}+3\sqrt{7})=18

\displaystyle 2x(2\sqrt{3}+3\sqrt{7})=18

\displaystyle x=\frac{18}{2(2\sqrt{3}+3\sqrt{7})}

\displaystyle x=\frac{9}{2\sqrt{3}+3\sqrt{7}}

Example Question #4 : Basic Squaring / Square Roots

Solve for \displaystyle x:

\displaystyle x\sqrt{27} + \sqrt{63}=9

Possible Answers:

\displaystyle x =\frac{3 -\sqrt{3}}{\sqrt{7}}

\displaystyle x =\frac{3 -\sqrt{7}}{\sqrt{3}}

\displaystyle x =\frac{3 -\sqrt{7}}{\sqrt{3}}

Correct answer:

\displaystyle x =\frac{3 -\sqrt{7}}{\sqrt{3}}

Explanation:

In order to solve for \displaystyle x, first note that all of the square root terms on the left side of the equation have a common factor of 9 and 9 is a perfect square:

\displaystyle x\sqrt{27} + \sqrt{63}=9

\displaystyle x\sqrt{9\times 3} + \sqrt{9\times 7}=9

\displaystyle 3x\sqrt{3} + 3\sqrt{7}=9

 

Simplifying, this becomes:

\displaystyle 3(x\sqrt{3} + \sqrt{7})=9

\displaystyle x\sqrt{3} + \sqrt{7}=3

\displaystyle x\sqrt{3} =3 -\sqrt{7}

\displaystyle x =\frac{3 -\sqrt{7}}{\sqrt{3}}

Example Question #612 : Gre Quantitative Reasoning

Which of the following is equivalent to:

\displaystyle \sqrt{210}+\sqrt{55}?

Possible Answers:

\displaystyle 7\sqrt{30}+5\sqrt{11}

\displaystyle 5\sqrt{462}

\displaystyle 5\sqrt{7}+\sqrt{11}

\displaystyle \sqrt{265}

\displaystyle \sqrt{5}(\sqrt{42}+\sqrt{11})

Correct answer:

\displaystyle \sqrt{5}(\sqrt{42}+\sqrt{11})

Explanation:

To begin with, factor out the contents of the radicals.  This will make answering much easier:

\displaystyle \sqrt{210}+\sqrt{55}=\sqrt{2*3*5*7}+\sqrt{5*11}

They both have a common factor \displaystyle 5.  This means that you could rewrite your equation like this:

\displaystyle \sqrt{5}\sqrt{2*3*7}+\sqrt{5}\sqrt{11}

This is the same as:

\displaystyle \sqrt{5}\sqrt{42}+\sqrt{5}\sqrt{11}

These have a common \displaystyle \sqrt{5}.  Therefore, factor that out:

\displaystyle \sqrt{5}\sqrt{42}+\sqrt{5}\sqrt{11}=\sqrt{5}(\sqrt{42}+\sqrt{11})

Example Question #3 : Basic Squaring / Square Roots

Simplify:

\displaystyle \sqrt{15}-\sqrt{20}+\sqrt{35}

Possible Answers:

\displaystyle \sqrt{7}-3\sqrt{5}

\displaystyle 2\sqrt{15}+\sqrt{2}

\displaystyle \sqrt{5}(\sqrt{3}+\sqrt{7}-2)

\displaystyle \sqrt{5}(\sqrt{10}-2)

\displaystyle \sqrt{2}(\sqrt{5}+2\sqrt{7})

Correct answer:

\displaystyle \sqrt{5}(\sqrt{3}+\sqrt{7}-2)

Explanation:

These three roots all have a \displaystyle 5 in common; therefore, you can rewrite them:

\displaystyle \sqrt{15}-\sqrt{20}+\sqrt{35}=\sqrt{3*5}-\sqrt{4*5}+\sqrt{7*5}

Now, this could be rewritten:

\displaystyle \sqrt{3*5}-\sqrt{4*5}+\sqrt{7*5}=\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{4}+\sqrt{5}\sqrt{7}

Now, note that \displaystyle \sqrt{4}=2

Therefore, you can simplify again:

\displaystyle \sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{4}+\sqrt{5}\sqrt{7}=\sqrt{5}\sqrt{3}-2\sqrt{5}+\sqrt{5}\sqrt{7}

Now, that looks messy! Still, if you look carefully, you see that all of your factors have \displaystyle \sqrt{5}; therefore, factor that out:

\displaystyle \sqrt{5}\sqrt{3}-2\sqrt{5}+\sqrt{5}\sqrt{7}=\sqrt{5}(\sqrt{3}-2+\sqrt{7})

This is the same as:

\displaystyle \sqrt{5}(\sqrt{3}+\sqrt{7}-2)

Example Question #6 : Basic Squaring / Square Roots

Solve for \displaystyle x:

\displaystyle 2x\sqrt{128}-3x\sqrt{192}=16

Possible Answers:

\displaystyle \frac{2}{2\sqrt{2}+3\sqrt{3}}

\displaystyle \frac{1}{2\sqrt{3}+3\sqrt{2}}

\displaystyle \frac{2}{2\sqrt{3}-3\sqrt{2}}

\displaystyle \frac{1}{2\sqrt{2}-3\sqrt{3}}

\displaystyle \frac{2}{2\sqrt{2}-3\sqrt{3}}

Correct answer:

\displaystyle \frac{2}{2\sqrt{2}-3\sqrt{3}}

Explanation:

Examining the terms underneath the radicals, we find that \displaystyle 128 and \displaystyle 192 have a common factor of \displaystyle 64\displaystyle 64 itself is a perfect square, being the product of \displaystyle 8 and \displaystyle 8. Hence, we recognize that the radicals can be re-written in the following manner:

\displaystyle \sqrt{128}=\sqrt{64} \sqrt{2}, and \displaystyle \sqrt{192}=\sqrt{64} \sqrt{3}.

The equation can then be expressed in terms of these factored radicals as shown:

\displaystyle 2x\sqrt{128}-3x\sqrt{192}=16 

\displaystyle \Rightarrow 2x(\sqrt64 \sqrt2)-3x(\sqrt{64} \sqrt3)=16  

\displaystyle \Rightarrow 2x(8)\sqrt2-3x(8)\sqrt3=16

\displaystyle \Rightarrow 16x\sqrt2-24x\sqrt3=16

Factoring the common term \displaystyle 8x from the lefthand side of this equation yields

\displaystyle 8x (2\sqrt2-3x\sqrt3)=16

Divide both sides by the expression in the parentheses:

\displaystyle 8x=\frac{16}{2\sqrt2-3x\sqrt3}

Divide both sides by \displaystyle 8 to yield \displaystyle x by itself on the lefthand side:

\displaystyle x=\frac{16}{8(2\sqrt2-3x\sqrt3)}

Simplify the fraction on the righthand side by dividing the numerator and denominator by \displaystyle 8:

\displaystyle x=\frac{2}{2\sqrt{2}-3\sqrt{3}}

This is the solution for the unknown variable \displaystyle x that we have been required to find.

 

Example Question #1 : How To Multiply Square Roots

Simplify: \displaystyle \sqrt{7}*\sqrt{14}

Possible Answers:

\displaystyle 7\sqrt{3}

\displaystyle 7\sqrt{2}

\displaystyle 2\sqrt{7}

\displaystyle \sqrt{21}

\displaystyle \sqrt{98}

Correct answer:

\displaystyle 7\sqrt{2}

Explanation:

When multiplying square roots, you are allowed to multiply the numbers inside the square root. Then simplify if necessary.

\displaystyle \sqrt{7}*\sqrt{14}=\sqrt{7*14}=\sqrt{98}=\sqrt{49}*\sqrt{2}=7\sqrt{2}

Example Question #2 : How To Multiply Square Roots

Simplify: \displaystyle \sqrt{10}*\sqrt{15}

Possible Answers:

\displaystyle \sqrt{150}

\displaystyle 5\sqrt{6}

\displaystyle 6\sqrt{5}

\displaystyle 10\sqrt{2}

\displaystyle 75\sqrt{2}

Correct answer:

\displaystyle 5\sqrt{6}

Explanation:

When multiplying square roots, you are allowed to multiply the numbers inside the square root. Then simplify if necessary.

\displaystyle \sqrt{10}*\sqrt{15}=\sqrt{10*15}=\sqrt{150}=\sqrt{25}*\sqrt{6}=5\sqrt{6}

Example Question #1 : How To Multiply Square Roots

Simplify: \displaystyle \sqrt{24}*3\sqrt{8}

Possible Answers:

\displaystyle 16\sqrt{6}

\displaystyle 12\sqrt{3}

\displaystyle 8\sqrt{14}

\displaystyle 24\sqrt{6}

\displaystyle 24\sqrt{3}

Correct answer:

\displaystyle 24\sqrt{3}

Explanation:

When multiplying square roots, you are allowed to multiply the numbers inside the square root. Then simplify if necessary.

\displaystyle \sqrt{24}*3\sqrt{8}=3\sqrt{24*8}=3\sqrt{192}=3\sqrt{64}*\sqrt{3}=24\sqrt{3}

Learning Tools by Varsity Tutors