SSAT Upper Level Math : How to graph complex numbers

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Graph Complex Numbers

Multiply:

\(\displaystyle \left (7 - 2i \right )\left (7 - 3i \right )\)

Possible Answers:

\(\displaystyle 55 +7i\)

\(\displaystyle 49 + 6i\)

\(\displaystyle 55 -35i\)

\(\displaystyle 43 -35i\)

\(\displaystyle 43 -7i\)

Correct answer:

\(\displaystyle 43 -35i\)

Explanation:

FOIL the product out:

\(\displaystyle \left (7 - 2i \right )\left (7 - 3i \right )\)

\(\displaystyle = 7 \cdot 7 - 7 \cdot 3i - 7 \cdot 2i + 2i \cdot 3i\)

\(\displaystyle = 49 -21i - 14i + 6 i^{2}\)

\(\displaystyle = 49 -21i - 14i + 6 (-1)\)

\(\displaystyle = 49 -6 -21i - 14i\)

\(\displaystyle = 43 -35i\)

Example Question #1 : How To Graph Complex Numbers

Simplify:

\(\displaystyle \left ( 8 - 3i\right ) ^{2}\)

Possible Answers:

\(\displaystyle 73\)

\(\displaystyle 73- 48i\)

\(\displaystyle 55\)

\(\displaystyle 55 - 48i\)

\(\displaystyle 55 +48i\)

Correct answer:

\(\displaystyle 55 - 48i\)

Explanation:

Use the square of a binomial pattern to multiply this:

\(\displaystyle \left ( 8 - 3i\right ) ^{2}\)

\(\displaystyle = 8 ^{2}- 2 \cdot8\cdot3i + \left ( 3i\right )^{2}\)

\(\displaystyle = 64- 48i + 3^{2}i^{2}\)

\(\displaystyle = 64- 48i + 9 (-1)\)

\(\displaystyle = 64-9 - 48i\)

\(\displaystyle = 55 - 48i\)

Example Question #391 : Geometry

Multiply:

\(\displaystyle (1.1 + 0.6i )(1.1 - 0.6i )\)

Possible Answers:

\(\displaystyle 1.57\)

\(\displaystyle 1.57 - 1.32i\)

\(\displaystyle 0.85 + 1.32i\)

\(\displaystyle 1.21 - 0.36i\)

\(\displaystyle 0.85\)

Correct answer:

\(\displaystyle 1.57\)

Explanation:

This is a product of an imaginary number and its complex conjugate, so it can be evaluated using this formula:

\(\displaystyle \left (a + bi \right )\left (a -bi \right ) = a^{2} + b ^{2}\)

\(\displaystyle \left (1.1 + 0.6i \right )\left (1.1 -0.6 i \right ) = 1.1^{2} + 0.6 ^{2} = 1.21 + 0.36 = 1.57\)

Example Question #613 : Ssat Upper Level Quantitative (Math)

Multiply:

\(\displaystyle \left (5 - 3i \right )\left (5 +3i \right )\)

Possible Answers:

\(\displaystyle 25 -9i\)

\(\displaystyle 34\)

\(\displaystyle 34 +30i\)

\(\displaystyle 16 -30i\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 34\)

Explanation:

This is a product of an imaginary number and its complex conjugate, so it can be evaluated using this formula:

\(\displaystyle \left (a - bi \right )\left (a +bi \right ) = a^{2} + b ^{2}\)

\(\displaystyle \left (5 - 3i \right )\left (5 +3i \right ) = 5 ^{2} + 3 ^{2}= 25 + 9 = 34\)

Example Question #5 : How To Graph Complex Numbers

Define an operation \(\displaystyle *\) as follows:

For all complex numbers \(\displaystyle a,b\),

\(\displaystyle a*b = a ^{5}-b^{3}\)

Evaluate \(\displaystyle \left (2 i \right )* \left (3i \right )\)

Possible Answers:

\(\displaystyle 5i\)

\(\displaystyle -27+32i\)

\(\displaystyle 27 -32i\)

\(\displaystyle 32 - 27i\)

\(\displaystyle 59i\)

Correct answer:

\(\displaystyle 59i\)

Explanation:

\(\displaystyle a*b = a ^{5}-b^{3}\)

\(\displaystyle \left (2 i \right )* \left (3i \right ) = \left (2 i \right ) ^{5}-\left (3i \right ) ^{3}\)

\(\displaystyle = 2^{5} i^{5} - 3^{3} i ^{3}\)

\(\displaystyle = 32\cdot i^{4} \cdot i - 27 \cdot (-i )\)

\(\displaystyle = 32\cdot 1 \cdot i +27 i\)

\(\displaystyle = 32 i +27 i\)

\(\displaystyle = 59 i\)

Example Question #5 : How To Graph Complex Numbers

Define an operation \(\displaystyle *\) as follows:

For all complex numbers \(\displaystyle a,b\),

\(\displaystyle a*b = a+3ib\)

Evaluate \(\displaystyle (4+7i) * (3-8i)\)

Possible Answers:

\(\displaystyle 28 +16 i\)

\(\displaystyle 13+31i\)

\(\displaystyle 35-35i\)

\(\displaystyle 13-17i\)

\(\displaystyle -20 + 16i\)

Correct answer:

\(\displaystyle 28 +16 i\)

Explanation:

\(\displaystyle a*b = a+3ib\)

\(\displaystyle (4+7i) * (3-8i) = (4+7i) + 3i (3-8i)\)

\(\displaystyle = 4+7i + 3i \cdot 3- 3i \cdot 8i\)

\(\displaystyle = 4+7i + 9i - 24i ^{2}\)

\(\displaystyle = 4+7i + 9i - 24 (-1)\)

\(\displaystyle = 4+7i + 9i- (-24)\)

\(\displaystyle = 4+7i + 9i +24\)

\(\displaystyle = 28 +16i\)

Example Question #1 : How To Graph Complex Numbers

Evaluate \(\displaystyle (3i)^{-5}\).

Possible Answers:

\(\displaystyle \frac{1}{243} i\)

The expression is undefined.

\(\displaystyle - \frac{1}{243} i\)

\(\displaystyle -243 i\)

\(\displaystyle 243i\)

Correct answer:

\(\displaystyle - \frac{1}{243} i\)

Explanation:

\(\displaystyle (3i)^{-5} = \frac{1}{(3i)^{5} }= \frac{1}{3^{5}i^{5} } = \frac{1}{243 i^{4} \cdot i } = \frac{1}{243 \cdot 1 \cdot i }\)

\(\displaystyle = \frac{1}{243 i } \cdot = \frac{1\cdot i}{243 i \cdot i } = \frac{i}{243 (-1)} = - \frac{1}{243} i\)

Example Question #8 : How To Graph Complex Numbers

Define an operation \(\displaystyle \wedge\) as follows:

For all complex numbers \(\displaystyle a,b\),

\(\displaystyle a \wedge b = a \div (b+ 2i)\)

Evaluate \(\displaystyle 8 \wedge 4\)

Possible Answers:

\(\displaystyle -\frac{8}{3} + \frac{ 4}{3}i\)

\(\displaystyle -\frac{8}{5} + \frac{ 4}{5}i\)

\(\displaystyle \frac{8}{3} - \frac{ 4}{3}i\)

\(\displaystyle \frac{8}{5} + \frac{ 4}{5}i\)

\(\displaystyle \frac{8}{5} - \frac{ 4}{5}i\)

Correct answer:

\(\displaystyle \frac{8}{5} - \frac{ 4}{5}i\)

Explanation:

\(\displaystyle a \wedge b = a \div (b+ 2i) = \frac{a}{b+2i}\)

\(\displaystyle 8 \wedge 4 = \frac{8}{4+2i}\)

Multiply both numerator and denominator by the conjugate of the denominator, \(\displaystyle 4 - 2i\), to rationalize the denominator:

\(\displaystyle 8 \wedge 4 = \frac{8(4-2i)}{(4+2i)(4-2i)}\)

\(\displaystyle = \frac{8\cdot 4-8\cdot 2i}{4^{2}+2^{2}}\)

\(\displaystyle = \frac{32-16i}{16+4}\)

\(\displaystyle = \frac{32-16i}{20}\)

\(\displaystyle = \frac{32 }{20} - \frac{ 16}{20}i\)

\(\displaystyle = \frac{8}{5} -\frac{ 4}{5}i\)

Example Question #7 : How To Graph Complex Numbers

Define an operation \(\displaystyle \bigstar\) as follows:

For all complex numbers \(\displaystyle a\),

\(\displaystyle \bigstar a = a^{2}i + a\)

Evaluate \(\displaystyle \bigstar (7i)\).

Possible Answers:

\(\displaystyle 49+7i\)

\(\displaystyle -56i\)

\(\displaystyle -42i\)

\(\displaystyle -49+7i\)

None of the other choices gives the correct answer.

Correct answer:

\(\displaystyle -42i\)

Explanation:

\(\displaystyle \bigstar a = a^{2}i + a\)

\(\displaystyle \bigstar (7i) = (7i)^{2}i + 7i\)

\(\displaystyle = 7^{2}\cdot i^{2} \cdot i + 7i\)

\(\displaystyle = 49\cdot (-1) \cdot i + 7i\)

\(\displaystyle = -49 i + 7i\)

\(\displaystyle =-42i\)

Example Question #10 : How To Graph Complex Numbers

Define an operation \(\displaystyle \bigstar\) as follows:

For all complex numbers \(\displaystyle a\),

\(\displaystyle \bigstar a = a^{2}i - 4 a\)

If \(\displaystyle \bigstar N = 0\) and \(\displaystyle N \ne 0\), evaluate \(\displaystyle N\).

Possible Answers:

\(\displaystyle N = -4i\)

\(\displaystyle N = -2i\)

\(\displaystyle N = - \frac{1}{4}i\)

\(\displaystyle N = \frac{1}{4}i\)

\(\displaystyle N = 4i\)

Correct answer:

\(\displaystyle N = -4i\)

Explanation:

If \(\displaystyle \bigstar N = 0\), then 

\(\displaystyle N^{2}i - 4 N= 0\)

Distribute out \(\displaystyle N\) to yield

\(\displaystyle N (Ni - 4 )= 0\)

Either \(\displaystyle N = 0\) or \(\displaystyle N i - 4 = 0\). However, we are given that \(\displaystyle N \ne 0\), so 

\(\displaystyle N i - 4 = 0\)

\(\displaystyle N i = 4\)

\(\displaystyle \frac{N i }{i}= \frac{4}{i}\)

\(\displaystyle N= \frac{4}{i} = \frac{4 \cdot i}{i\cdot i}= \frac{4i}{-1} = -4i\)

Learning Tools by Varsity Tutors