ACT Math : Variables

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Variables

Mike wants to sell candy bars for a \displaystyle 50\% profit. If he sells each bar for \displaystyle \$1.20, how much did each bar cost him?

Possible Answers:

\displaystyle \$1.00

\displaystyle \$0.60

\displaystyle \$0.80

\displaystyle \$0.75

Correct answer:

\displaystyle \$0.80

Explanation:

In order to solve this problem, set up the following equation:

\displaystyle \frac{1.20}{x}=\frac{150\%}{100\%}

Cross multiply:

\displaystyle 150x = 120

Divide:

\displaystyle \frac{150x}{150} = \frac{120}{150} = 0.80

The original cost of the of each candy bar is \displaystyle \$0.80

Example Question #2081 : Act Math

Choose the answer that is the simplest form of the following expression of monomial quotients: 

\displaystyle \frac{12x^3y^2p}{4ab}\div\frac{3x^3y}{2ab}

Possible Answers:

\displaystyle 3yp

\displaystyle 2yp

\displaystyle 2xy

\displaystyle 3ax

\displaystyle 12xp

Correct answer:

\displaystyle 2yp

Explanation:

\displaystyle \frac{12x^3y^2p}{4ab}\div\frac{3x^3y}{2ab}

To divide monomial quotients, simply invert the divisor and multiply:

\displaystyle \frac{12x^3y^2p}{4ab} *\frac{2ab}{3x^3y} = \frac{24x^3y^2pab}{12abx^3y}

Then, reduce:

\displaystyle \frac{24yp}{12} = 2yp

Example Question #1 : How To Divide Monomial Quotients

Choose the answer that is the simplest form of the following expression of monomial quotients: 

\displaystyle \frac{10m^2np}{3xy}\div\frac{3p^2}{2xym}

Possible Answers:

\displaystyle \frac{20n^3}{9m}

\displaystyle \frac{20x^3}{9y}

\displaystyle \frac{20m^3n}{9p}

\displaystyle \frac{9p}{20m^3n}

\displaystyle \frac{20p^3n}{9m}

Correct answer:

\displaystyle \frac{20m^3n}{9p}

Explanation:

\displaystyle \frac{10m^2np}{3xy}\div\frac{3p^2}{2xym}

To find your answer, you have to invert the divisor and multiply across:

\displaystyle \frac{10m^2np}{3xy} * \frac{2xym}{3p^2} = \frac{20m^3npxy}{9p^2xy}

Then, reduce:

\displaystyle \frac{20m^3n}{9p}

Example Question #1 : Variables

Multiply: \displaystyle 2x\ast(4x+3)

Possible Answers:

\displaystyle 8x^{2}+6

\displaystyle 8x^{2}+6x

\displaystyle 6x+8

\displaystyle 8x+6

\displaystyle 6x^{2}+8x

Correct answer:

\displaystyle 8x^{2}+6x

Explanation:

To solve you must multiply \displaystyle 2x by both terms in \displaystyle (4x+3)

\displaystyle 2x\ast4x=8x^{2}

\displaystyle 2x\ast3=6x

\displaystyle 8x^{2}+6x

Example Question #1 : Variables

Multiply: 

\displaystyle 4x\cdot(5x+7)

Possible Answers:

\displaystyle 9x^{2}+28x

\displaystyle 20x^{2}+28x

\displaystyle 20x+11

\displaystyle 9x^{2}+28

Correct answer:

\displaystyle 20x^{2}+28x

Explanation:

Multiply \displaystyle 4x by both terms in \displaystyle (5x+7)

\displaystyle 4x\cdot5x=20x^{2}

\displaystyle 4x\cdot7=28x

\displaystyle 20x^{2}+28x

Example Question #2 : Variables

Multiply \displaystyle \left (7x^{2}-12x+4 \right ) \cdot 3x 

Possible Answers:

None of the other answers

\displaystyle 7x^{3}-12x^{2}+4x

\displaystyle 21x^{3}-36x^{2}+12x

\displaystyle 21x^{2}-36x+12

\displaystyle 21x^{3}+36x^{2}+12x

Correct answer:

\displaystyle 21x^{3}-36x^{2}+12x

Explanation:

When multiplying a polynomial by a monomial, each term in the polynomial gets multiplied by the monomial. Calculate each term one at a time, then add the results to get the final answer. In this case, we start by multiplying \displaystyle 7x^{2}\cdot3x\displaystyle 7\cdot3=21 and \displaystyle x^{2}\cdot x=x^{3}, thus we get \displaystyle 21x^{3}. For the second term of the polynomial, we multiply \displaystyle -12\cdot3=-36 and \displaystyle x\cdot x= x^{2}, resulting in \displaystyle -36x^{2}. Finally, we multiply \displaystyle 4\cdot3 = 12 and \displaystyle 1\cdot x = x, resulting in \displaystyle 12x. Adding the three terms that we just found, we come to the answer of \displaystyle 21x^{3}-36x^{2}+12x.

Example Question #1 : Variables

Choose the answer that is the best solution to the following expression of monomial quotients: 

\displaystyle \frac{4x^2p^3}{3mn^2} * \frac{2mn}{12xy}

Possible Answers:

\displaystyle \frac{2xp}{9n^2y}

\displaystyle \frac{4xp}{11n^2y}

\displaystyle \frac{8xp^3}{36ny}

\displaystyle \frac{4xp^3}{5ny}

\displaystyle \frac{2xp^3}{9ny}

Correct answer:

\displaystyle \frac{2xp^3}{9ny}

Explanation:

\displaystyle \frac{4x^2p^3}{3mn^2} * \frac{2mn}{12xy}

To multiply monomial quotients, treat them as you would any other fraction. Combine like terms wherever possible:

\displaystyle \frac{8x^2p^3mn}{36mn^2xy}

Then, you need to reduce:

\displaystyle \frac{2xp^3}{9ny}

Example Question #2 : Monomials

Choose the answer that is the simplest form of the following expression of monomial quotients: 

\displaystyle \frac{2x^3y^4}{10z^3} * \frac{4z^2p}{10xy}

Possible Answers:

\displaystyle \frac{13x^2y^3p}{100z}

\displaystyle \frac{2x^2y^3p}{25z}

\displaystyle \frac{8x^2y^3p}{25z^2}

\displaystyle \frac{2xyp}{15z}

\displaystyle \frac{2p}{25z}

Correct answer:

\displaystyle \frac{2x^2y^3p}{25z}

Explanation:

\displaystyle \frac{2x^3y^4}{10z^3} * \frac{4z^2p}{10xy}

To simplify, first multiply across:

\displaystyle \frac{8x^3y^4z^2p}{100z^3xy}

Then, reduce:

\displaystyle \frac{2x^2y^3p}{25z}

Example Question #2 : Variables

The price of silver varies directly as the square of the mass. If 3.6 g of silver is worth $64.80, what is the value of 7.5 g of silver?

Possible Answers:

$281.25

$215.25

$178.50

$135.00

$301.75

Correct answer:

$281.25

Explanation:

This is a direct variation problem of the form y = kx2  The first set of data 3.6 g and $64.80 is used to calculate the proportionality constant, k.  So 64.80 = k(3.6)2 and solving the equation gives k = 5.

Now we move to the new data, 7.5 g and we get y = 5(7.5)2 to yield an answer of $218.25.

$135.00 is the answer obtained if using proportions.  This is an error because it does not take into consideration the squared elements of the problem.

Example Question #3 : Variables

The diameter of a specific brand of candy wrapper is \displaystyle 6cm longer than half the volume of the candy itself. Find the expression for the diameter, \displaystyle d, in terms of the volume, \displaystyle v.

Possible Answers:

\displaystyle d=2v-6

\displaystyle d=\frac{1}{2}v-6

\displaystyle d=\frac{4}{3}v^2

\displaystyle d=\frac{1}{2}v+6

\displaystyle d=2v+6

Correct answer:

\displaystyle d=\frac{1}{2}v+6

Explanation:

The question asks for an equation that can relate \displaystyle d and \displaystyle v to each other, based on the information given. We are told that half the volume + \displaystyle 6cm determines the total diameter.

This gives us:

\displaystyle d=\frac{1}{2}v+6

Learning Tools by Varsity Tutors