Algebra 1 : How to use the grid method for FOIL

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Use The Grid Method For Foil

\displaystyle Expand \; (5x^2 +x + 1)(3x-2)

Possible Answers:

\displaystyle 15 x^3-7 x^2+x-2

\displaystyle 8x^3-7 x^2+x-2

\displaystyle 15 x^3+7 x^2-x-2

\displaystyle 15 x^2-6 x-2

Correct answer:

\displaystyle 15 x^3-7 x^2+x-2

Explanation:

\displaystyle Multiply \; (3 x-2) (5 x^2+x+1)\; using \; a \; grid

           

\displaystyle 5x^2

\displaystyle x

\displaystyle 1

\displaystyle 3x

\displaystyle 15x^3      

\displaystyle 3x^2     

\displaystyle 3x

\displaystyle -2

\displaystyle -10x^2

\displaystyle -2x

\displaystyle -2

 

 

\displaystyle Answer: \; 15 x^3-7 x^2+x-2

Example Question #2 : How To Use The Grid Method For Foil

Multiply: \displaystyle (x-8)(3-x)

Possible Answers:

\displaystyle x^2 -11x -24

\displaystyle -x^2 +24x -24

\displaystyle 3x^2 -25x +8

\displaystyle -x^2 +11x -24

Correct answer:

\displaystyle -x^2 +11x -24

Explanation:

To multiply two binomials, both terms in the first binomial need to be multiplied with both terms in the second binomial. A good way to make sure that all of the pairs are multiplied is to set up the box/grid:

Box2b

In each empty box, multiply the intersecting terms:

Box2a

Now, combine like terms. 3x and 8x are both terms with x, so we can add them to be 11x.

Final answer [in descending order of powers of x:

\displaystyle -x^2 +11x -24

Example Question #3 : How To Use The Grid Method For Foil

Multiply: \displaystyle (2x+4)(x-3)

Possible Answers:

\displaystyle x^2 + 2x - 12

\displaystyle 2x^2 - 24x - 12

\displaystyle 2x^2 +2x - 12

\displaystyle 2x^2 -2x -12

Correct answer:

\displaystyle 2x^2 -2x -12

Explanation:

To multiply two binomials, both terms in the first binomial need to be multiplied with both terms in the second binomial. A good way to make sure that all of the pairs are multiplied is to set up the box/grid:

Box1a

In each empty box, multiply the intersecting terms: 

 

Box1b

Now, combine like terms. -6x and 4x are both terms with x, so we can add them to be -2x.

Final answer: \displaystyle 2x^2 -2x -12

Example Question #1 : How To Use The Grid Method For Foil

Use the grid method to distribute and simply \displaystyle (x+3)(x-6).

Possible Answers:

\displaystyle x^2+9x+18

\displaystyle x^2-9x+18

\displaystyle x^2-18

\displaystyle x+3x-6

\displaystyle x^2-3x-18

Correct answer:

\displaystyle x^2-3x-18

Explanation:

Alg 1 prob 1a

Top left corner:

 \displaystyle x*x=x^2

Top right corner:

\displaystyle x*-6=-6x

Bottom left corner:

\displaystyle +3*x=3x

Bottom right corner:

\displaystyle +3*-6=-18

Add along the diagonal:

\displaystyle -6x+3x=-3x

Combining our terms:

\displaystyle x^2-3x-18

Example Question #4 : How To Use The Grid Method For Foil

Expand \displaystyle (3x+4)(x-9) using the grid method.

Possible Answers:

\displaystyle 3x^2-23x-36

\displaystyle x^2-5x-36

\displaystyle 3x^2+23x-36

\displaystyle 3x^2+31x+36

\displaystyle 3x^2-31x-36

Correct answer:

\displaystyle 3x^2-23x-36

Explanation:

Alg 1 prob 2

 

Top left corner:

 \displaystyle 3x*x=3x^2

Top right corner:

\displaystyle 3x*-9=-27x

Bottom left corner:

\displaystyle 4*x=4x

Bottom right corner:

\displaystyle 4*-9=-36

Add along the pink diagonal:

\displaystyle 4x-27x=-23x

Combining our terms:

\displaystyle 3x^2-23x-36

Example Question #3 : How To Use The Grid Method For Foil

Expand \displaystyle (5x^2+x+1)(3x-2) using the grid method.

Possible Answers:

\displaystyle 15x^3+13x^2+5x-2

\displaystyle 15x^3-7x^2+x-2

\displaystyle 8x^3-7x^2+x-2

\displaystyle 8x^2+x-2

\displaystyle 15x^3-7x^2-x-2

Correct answer:

\displaystyle 15x^3-7x^2+x-2

Explanation:

Alg 1 prob 3

 

Top left corner:

 \displaystyle 5x^2*3x=15x^3

Top right corner:

\displaystyle 5x^2*-2=-10x^2

Middle left:

\displaystyle x*3x=3x^2

Middle right:

\displaystyle x*-2=-2x

Bottom left corner:

\displaystyle 1*3x=3x

Bottom right corner:

\displaystyle 1*-2=-2

Add along the first (pink) diagonal:

\displaystyle 3x^2-10x^2=-7x^2

Add along the second (blue) diagonal:

\displaystyle 3x-2x=x

Combining our terms:

\displaystyle 15x^3-7x^2+x-2

Example Question #4 : How To Use The Grid Method For Foil

Expand \displaystyle (x-6)(-x+1) using the grid method.

Possible Answers:

\displaystyle -x^2+7x-6

\displaystyle -x^2-5x-6

\displaystyle -x^2-7x-6

\displaystyle x^2+7x-6

\displaystyle x^2+6x+1

Correct answer:

\displaystyle -x^2+7x-6

Explanation:

Alg 1 prob 4

 

Top left corner:

 \displaystyle x*-x=-x^2

Top right corner:

\displaystyle x*1=x

Bottom left corner:

\displaystyle -6*-x=6x

Bottom right corner:

\displaystyle -6*1=-6

Add along the (pink) diagonal:

\displaystyle 6x+x=7x

Combining our terms:

\displaystyle -x^2+7x-6

Example Question #4 : How To Use The Grid Method For Foil

Expand \displaystyle (-x+2)(3x-2) using the grid method.

Possible Answers:

\displaystyle -3x^2+8x-4

\displaystyle -3x^2+8x+4

\displaystyle 3x^2+8x-4

\displaystyle -3x^2+8x+4

\displaystyle -3x^2+3x-4

Correct answer:

\displaystyle -3x^2+8x-4

Explanation:

Alg 1 prob 5

 

Top left corner:

 \displaystyle -x*3x=-3x^2

Top right corner:

\displaystyle -x*-2=2x

Bottom left corner:

\displaystyle 2*3x=6x

Bottom right corner:

\displaystyle 2*-2=-4

Add along the (pink) diagonal:

\displaystyle 6x+2x=8x

Combining our terms:

\displaystyle -3x^2+8x-4

Example Question #5 : How To Use The Grid Method For Foil

Expand \displaystyle (2x+4)(x-3) and \displaystyle (x-3)(2x+4) using the grid method. Compare your answers.

Possible Answers:

The answers are the same except that the middle terms are different.

The answers are the same.

The answers are completely different.

The answers have opposite signs.

Correct answer:

The answers are the same.

Explanation:

Let's look at the grid for \displaystyle (2x+4)(x-3) first.

Alg 1 prob 6a

 

Now let's look at the grid for \displaystyle (x-3)(2x+4).

Alg 1 prob 6b

 

Top left corner:

 \displaystyle 2x*x=2x^2 or \displaystyle x*2x=2x^2

Both grids give us \displaystyle 2x^2.

Top right corner:

\displaystyle 2x*-3=-6x or \displaystyle x*4=4x

Bottom left corner:

\displaystyle 4*x=4x or \displaystyle -3*2x=-6x

Bottom right corner:

\displaystyle 4*-3=-12 or \displaystyle -3*4=-12

Both grids give us \displaystyle -12 here.

Add along the (pink) diagonals in each grid:

\displaystyle 4x-6x=-2x or \displaystyle -6x+4x=-2x

Both grids give us \displaystyle -2x.

Combining our terms in either grid, we get:

\displaystyle 2x^2-2x-12

So the answers are exactly the same!

Example Question #1 : How To Use The Grid Method For Foil

Expand \displaystyle (-10x-1)(x+3) using the grid method.

Possible Answers:

\displaystyle -10x^2-31x-3

\displaystyle -10x^2-31x+3

\displaystyle -10x^2+33x-3

\displaystyle 10x^2-31x-3

\displaystyle 10x^2-33x-3

Correct answer:

\displaystyle -10x^2-31x-3

Explanation:

Alg 1 prob 7

 

Top left corner:

 \displaystyle -10x*x=-10x^2

Top right corner:

\displaystyle -10x*3=-30x

Bottom left corner:

\displaystyle -1*x=-x 

Bottom right corner:

\displaystyle -1*3=-3 

Add along the (pink) diagonal:

\displaystyle -x-30x=-31x

Combining our terms, we get:

\displaystyle -10x^2-31x-3

Learning Tools by Varsity Tutors