Algebra II : Simplifying Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Exponents

Simplify.

\displaystyle x^{-6}x^3x^9

Possible Answers:

\displaystyle x^{-12}

\displaystyle x

\displaystyle x^{12}

\displaystyle x^6

\displaystyle x^{-6}

Correct answer:

\displaystyle x^6

Explanation:

Put the negative exponent on the bottom so that you have \displaystyle \frac{x^{12}}{x^{6}} which simplifies further to \displaystyle x^{6}.

Example Question #3461 : Algebra Ii

Evaluate the following expression

\displaystyle (5^{0})^{2}

Possible Answers:

\displaystyle \frac{1}{25}

\displaystyle 1

\displaystyle 5^{20}

\displaystyle \frac{1}{2}

\displaystyle 25

Correct answer:

\displaystyle 1

Explanation:

\displaystyle (5^{0})^{2}=(1)^{2}=1

We can also solve this problem using a different apporach

\displaystyle (5^{0})^{2}=5^{0\times2}=5^{0}=1

Remember that any number raised to the 0th power equals 1

Example Question #1 : Simplifying Exponents

Simplify the following expression

\displaystyle ((yz)^2)^{3}

Possible Answers:

\displaystyle yz

\displaystyle y^{\frac{2}{3}}z^{\frac{2}{3}}

\displaystyle y^{6}z^{6}

\displaystyle y^{2}z^{2}

Correct answer:

\displaystyle y^{6}z^{6}

Explanation:

\displaystyle ((yz)^{2})^{3}=(yz)^{6}=y^{6}z^{6}

Alternatively,

\displaystyle ((yz)^{2})^{3}=(y^{2}z^{2})^3=y^{2\times3}z^{2\times3}=y^{6}z^{6}

Example Question #801 : Mathematical Relationships And Basic Graphs

Simplify the following expression

\displaystyle ((6^2)^{0})^{3}

Possible Answers:

\displaystyle 36^3

\displaystyle 6^5

\displaystyle 6^6

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

\displaystyle ((6^2)^{0})^{3}=6^{2\times 0\times 3}=6^0=1

Remember that any number raised to the 0th power equals 1

Example Question #1 : Simplifying Exponents

Evaluate the following expression

\displaystyle \left (\frac{10^{3}}{10^{0}} \right )^{2}

Possible Answers:

\displaystyle 100,000

\displaystyle .01

\displaystyle .0001

\displaystyle 1,000,000

\displaystyle 10

Correct answer:

\displaystyle 1,000,000

Explanation:

\displaystyle \left (\frac{10^{3}}{10^{0}} \right )^{2}=\frac{10^{3\times2}}{10^{0\times2}}=\frac{10^{6}}{10^{0}}=\frac{1000000}{1}=1,000,000

Alternatively,

\displaystyle \left (\frac{10^{3}}{10^{0}} \right )^{2}=\left (10^{3-0} \right )^{2}=\left (10^{3} \right )^{2}=10^{3\times 2}=10^{6}=1,000,000

Example Question #1 : Simplifying Exponents

Simplify:

\displaystyle \frac{4a^{-5}b^{3}c^{2}}{12a^{-7}b^{-5}c^{-2}}

Possible Answers:

\displaystyle \frac{4a^{2}b^{2}}{12}

\displaystyle \frac{a^{2}b^{8}c^{4}}{3}

\displaystyle \frac{a^{-12}b^{-2}c^{0}}{3}

\displaystyle 3a^{12}b^{-8}

\displaystyle \frac{1}{3a^{-12}b^{-2}}

Correct answer:

\displaystyle \frac{a^{2}b^{8}c^{4}}{3}

Explanation:

\displaystyle \frac{4a^{-5}b^{3}c^{2}}{12a^{-7}b^{-5}c^{-2}}

Step 1: Simplify the exponents using the division of exponents rule (subtract exponents in demoninator from exponents in numerator).

\displaystyle \frac{4a^{-5-(-7)}b^{3-(-5)}c^{2-(-2)}}{12}

\displaystyle \frac{4a^{2}b^{8}c^{4}}{12}

Step 2: Reduce the fraction

\displaystyle \frac{a^{2}b^{8}c^{4}}{3}

Example Question #2 : Simplifying Exponents

Simplify:

\displaystyle \frac{q^{7}r^{5}s^{16}}{q^{2}r^{3}s}

Possible Answers:

\displaystyle q^{9}r^{8}s^{17}

\displaystyle q^{5}r^{2}s^{15}

\displaystyle q^{14}r^{15}s^{16}

\displaystyle qrs

\displaystyle q^{3.5}r^{1.3}s^{16}

Correct answer:

\displaystyle q^{5}r^{2}s^{15}

Explanation:

Follow the division of exponents rule.  Subract the exponents in the denominator from the exponents in the numerator.

Example Question #4 : Multiplying And Dividing Exponents

Rewrite using a single exponent.

\displaystyle \frac{(6x)^{8}}{(6x)^{3}}

Possible Answers:

\displaystyle x^{5}

\displaystyle (6x)^{24}

\displaystyle (6x)^{11}

\displaystyle x^{11}

\displaystyle (6x)^{5}

Correct answer:

\displaystyle (6x)^{5}

Explanation:

Based on the property for dividing exponents:

\displaystyle \frac{a^{m}}{a^{n}}=a^{m-n}

In this problem, a is equal to \displaystyle (6x), so

\displaystyle \frac{(6x)^{8}}{(6x)^{3}}=(6x)^{8-3}=(6x)^{5}

Example Question #1 : Simplifying Exponents

Simplify:

\displaystyle \frac{7a^{-7}b^{-8}c^{4}}{14a^{5}b^{-9}c{}}

Possible Answers:

\displaystyle \frac{bc^3}{2a^{12}}

\displaystyle \frac{bc^3}{98a^{12}}

\displaystyle \frac{a^{12}}{2bc^3}

\displaystyle \frac{7bc^3}{14a^2}

\displaystyle \frac{2}{a^{2}bc^3}

Correct answer:

\displaystyle \frac{bc^3}{2a^{12}}

Explanation:

Simplify:

\displaystyle \frac{7a^{-7}b^{-8}c^{4}}{14a^{5}b^{-9}c{}}

Step 1: Use the division of exponents rule, and subtract the exponents in the denominator from the exponents in the numerator

\displaystyle \frac{7a^{-12}bc^3}{14}

Step 2: Move negative exponents in the numerator to the denominator

\displaystyle \frac{7bc^3}{14a^{12}}

Step 3: Simplify

\displaystyle \frac{bc^3}{2a^{12}}

Example Question #2 : Multiplying And Dividing Exponents

Simplify:

\displaystyle \frac{x^{6}zy^{-9}}{x^{-4}z^2y^3}

Possible Answers:

\displaystyle x^2z^{-1}y^6

\displaystyle \frac{x^{10}z^3}{y^6}

\displaystyle \frac{x}{yz^2}

\displaystyle \frac{x^{10}}{zy^{12}}

\displaystyle \frac{y^6}{x^{10}z^3}

Correct answer:

\displaystyle \frac{x^{10}}{zy^{12}}

Explanation:

Step 1: Use the division of exponents rule.  Subtract the exponents in the numerator from the exponents in the denominator.

\displaystyle x^{10}z^{-1}y^{-12}

Step 2: Represent the negative exponents as positive ones by moving them to the denominator:

Learning Tools by Varsity Tutors