Calculus 2 : Polar

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Polar

Rewrite the polar equation 

\(\displaystyle r = \sin ^{2} \theta\)

in rectangular form.

Possible Answers:

\(\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{2}\)

\(\displaystyle y ^{3} = \left (x^{2} +y^{2} \right )^{2}\)

\(\displaystyle y ^{4} = \left (x^{3} +y^{3} \right )^{2}\)

\(\displaystyle y ^{3} = \left (x^{2} +y^{2} \right )^{4}\)

\(\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{3}\)

Correct answer:

\(\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{3}\)

Explanation:

\(\displaystyle r = \sin ^{2} \theta\)

\(\displaystyle r^{2} \cdot r = r^{2} \sin ^{2} \theta\)

\(\displaystyle r^{3} =\left ( r \sin \theta \right ) ^{2}\)

\(\displaystyle \left ( r^{2} \right )^{\frac{3}{2}} =\left ( r \sin \theta \right ) ^{2}\)

\(\displaystyle \left (x^{2} +y^{2} \right )^{\frac{3}{2}} =y ^{2}\)

\(\displaystyle \left [ \left (x^{2} +y^{2} \right )^{\frac{3}{2}} \right ] ^{2} =\left ( y ^{2} \right ) ^{2}\)

\(\displaystyle \left (x^{2} +y^{2} \right )^{3} = y ^{4}\)

or \(\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{3}\)

Example Question #2 : Polar

Rewrite in polar form:

\(\displaystyle x^{2} = 3xy + 1\)

Possible Answers:

\(\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }}\)

\(\displaystyle r =\sqrt{ \frac{1}{\cos \theta + 3 \sin \theta\; } }\)

\(\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta + 3 \cos \theta\; \sin \theta }}\)

\(\displaystyle r =\sqrt{ \frac{1}{\sin \theta + 3 \cos \theta\; } }\)

\(\displaystyle r = \sqrt{\frac{1}{\sin ^{2} \theta - 3 \cos \theta\; \sin \theta }}\)

Correct answer:

\(\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }}\)

Explanation:

\(\displaystyle x^{2} = 3xy + 1\)

\(\displaystyle \left (r \cos \theta \right ) ^{2} = 3\left (r \cos \theta \right )\left (r \sin \theta \right ) + 1\)

\(\displaystyle r ^{2} \cos ^{2} \theta = 3 r^{2} \cos \theta\; \sin \theta \right ) + 1\)

\(\displaystyle r ^{2} \cos ^{2} \theta - 3 r^{2} \cos \theta\; \sin \theta \right ) = 1\)

\(\displaystyle r ^{2} \left ( \ \cos ^{2} \theta - 3 \cos \theta\; \sin \theta \right ) = 1\)

\(\displaystyle r ^{2} = \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }\)

\(\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }}\)

Example Question #1 : Polar

Rewrite the polar equation 

\(\displaystyle r ^{2} + 1 = \cos \theta\)

in rectangular form.

Possible Answers:

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} }\)

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ y}{{x^{2} + y ^{2}} +1}\)

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ y}{x^{2} + y ^{2}}\)

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} +1}\)

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{x+ y}{{x^{2} + y ^{2}} +1}\)

Correct answer:

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} +1}\)

Explanation:

\(\displaystyle r ^{2} + 1 = \cos \theta\)

\(\displaystyle r\left ( r ^{2} + 1 \right )= r \cos \theta\)

\(\displaystyle \sqrt{x^{2} + y ^{2}} \left ( {x^{2} + y ^{2}} +1 \right ) = x\)

\(\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} +1}\)

Example Question #1 : Polar

Give the polar form of the equation of the line with intercepts \(\displaystyle (0,4), (-6,0)\).

Possible Answers:

\(\displaystyle r = 12\tan \theta\)

\(\displaystyle r = \frac{12}{3 \sin \theta + 2 \cos \theta }\)

\(\displaystyle r = \frac{12}{2 \sin \theta - 3 \cos \theta }\)

\(\displaystyle r = \frac{12}{ \tan \theta }\)

\(\displaystyle r = \frac{12}{3 \sin \theta - 2 \cos \theta }\)

Correct answer:

\(\displaystyle r = \frac{12}{3 \sin \theta - 2 \cos \theta }\)

Explanation:

This line has slope \(\displaystyle \frac{4-0}{0- (-6)} = \frac{2}{3}\) and \(\displaystyle y\)-intercept \(\displaystyle (0.4)\), so its Cartesian equation is \(\displaystyle y = \frac{2}{3}x + 4\).

By substituting, we can rewrite this:

\(\displaystyle r \sin \theta = \frac{2}{3}r \cos \theta + 4\)

\(\displaystyle r \sin \theta - \frac{2}{3}r \cos \theta = 4\)

\(\displaystyle 3 r \sin \theta - 2 r \cos \theta = 12\)

\(\displaystyle r \left ( 3 \sin \theta - 2 \cos \theta \right )= 12\)

\(\displaystyle r = \frac{12}{3 \sin \theta - 2 \cos \theta }\)

Example Question #5 : Polar

Give the rectangular coordinates of the point with polar coordinates 

\(\displaystyle \left ( -4 , \frac{\pi }{3}\right )\).

Possible Answers:

\(\displaystyle \left ( -2, -2 \sqrt{3} \right )\)

\(\displaystyle \left ( -2 \sqrt{3} , -2\right )\)

\(\displaystyle \left ( -2 \sqrt{3} , 2\right )\)

\(\displaystyle \left ( 2 \sqrt{3} , -2\right )\)

\(\displaystyle \left ( 2, -2 \sqrt{3} \right )\)

Correct answer:

\(\displaystyle \left ( -2, -2 \sqrt{3} \right )\)

Explanation:

\(\displaystyle x = r \cos \theta = -4 \cos \frac{\pi}{3} = -4 \cdot \frac{1}{2} = -2\)

\(\displaystyle y = r \sin \theta = -4 \sin \frac{\pi}{3} = -4 \cdot \frac{ \sqrt{3}}{2} = -2 \sqrt{3}\)

The point will have rectangular coordinates \(\displaystyle \left (- 2, -2 \sqrt{3} \right )\).

Example Question #6 : Polar

What would be the equation of the parabola \(\displaystyle \small y=x^{2}\) in polar form?

Possible Answers:

\(\displaystyle \small r=cot\theta cos\theta\)

\(\displaystyle \small r=\theta ^{2}\)

\(\displaystyle \small r=tan\theta sec\theta\)

\(\displaystyle \small \small \small r=tan\theta sin\theta\)

\(\displaystyle \small \small r=cot\theta csc\theta\)

Correct answer:

\(\displaystyle \small r=tan\theta sec\theta\)

Explanation:

We know \(\displaystyle \small y=rsin\theta\) and \(\displaystyle \small x=rcos\theta\).

Subbing that in to the equation \(\displaystyle \small y=x^{2}\) will give us \(\displaystyle \small rsin\theta=r^{2}cos^{2}\theta\).

Multiplying both sides by \(\displaystyle \small 1/(rcos^{2}\theta)\) gives us 

\(\displaystyle \small \small \small \small \small r=sin\theta /cos^{2}\theta=tan\theta/cos\theta=tan\theta\cdot sec\theta\).

Example Question #7 : Polar

A point in polar form is given as \(\displaystyle \left(3,\frac{\pi}{3}\right)\).

Find its corresponding \(\displaystyle (x,y)\) coordinate.

Possible Answers:

\(\displaystyle \left(\frac{3}{2},\frac{3\sqrt3}{2}\right)\)

\(\displaystyle \left(\frac{3\sqrt3}{2},\frac{3}{2}\right)\)

\(\displaystyle (0,3)\)

\(\displaystyle \left(\frac{3}{2},\frac{3}{2}\right)\)

\(\displaystyle \left(3,\frac{3\sqrt3}{2}\right)\)

Correct answer:

\(\displaystyle \left(\frac{3}{2},\frac{3\sqrt3}{2}\right)\)

Explanation:

To go from polar form to cartesion coordinates, use the following two relations.

\(\displaystyle x=rcos(\theta)\)

\(\displaystyle y=rsin(\theta)\)

In this case, our \(\displaystyle r\) is \(\displaystyle 3\) and our \(\displaystyle \theta\) is \(\displaystyle \frac{\pi}{3}\).

Plugging those into our relations we get 

\(\displaystyle x=\frac{3}{2}\)

\(\displaystyle y=\frac{3\sqrt3}{2}\)

which gives us our \(\displaystyle (x,y)\) coordinate.

Example Question #8 : Polar

What is the magnitude and angle (in radians) of the following cartesian coordinate?

\(\displaystyle (3,4)\)

Give the answer in the format below.

\(\displaystyle (r,\theta)\)

Possible Answers:

\(\displaystyle (3,1.04)\)

\(\displaystyle (12,0.707)\)

\(\displaystyle (5,0.927)\)

\(\displaystyle (5,0.643)\)

\(\displaystyle (4,0.927)\)

Correct answer:

\(\displaystyle (5,0.927)\)

Explanation:

Although not explicitly stated, the problem is asking for the polar coordinates of the point \(\displaystyle (3,4)\). To calculate the magnitude, \(\displaystyle r\), calculate the following:

\(\displaystyle r=\sqrt{x^2+y^2}\)

\(\displaystyle r=5\)

To calculate \(\displaystyle \theta\), do the following:

\(\displaystyle \theta=tan^{-1}\left(\frac{y}{x}\right)\) in radians. (The problem asks for radians)

\(\displaystyle \theta = 0.927\)

 

Example Question #1 : Polar

What is the following coordinate in polar form?

\(\displaystyle (-2,-5)\)

Provide the angle in degrees.

Possible Answers:

\(\displaystyle (10,248)\)

\(\displaystyle (\sqrt{29},248)\)

\(\displaystyle (16,112)\)

\(\displaystyle (\sqrt{29},68)\)

\(\displaystyle (\sqrt{29},202)\)

Correct answer:

\(\displaystyle (\sqrt{29},248)\)

Explanation:

To calculate the polar coordinate, use

\(\displaystyle r=\sqrt{x^2+y^2}\)

\(\displaystyle r=\sqrt{29}\)

\(\displaystyle \theta=tan^{-1}\left(\frac{y}{x}\right)=68\)

However, keep track of the angle here. 68 degree is the mathematical equivalent of the expression, but we know the point (-2,-5) is in the 3rd quadrant, so we have to add 180 to it to get 248.

Some calculators might already have provided you with the correct answer.

\(\displaystyle \theta=248\).

Example Question #1 : Polar Form

What is the equation \(\displaystyle y=2x^{2}\) in polar form?

Possible Answers:

\(\displaystyle r=\frac{1}{2}\sin \theta}{\tan \theta\)

\(\displaystyle r=\frac{1}{2}\sin \theta}{\sec \theta\)

\(\displaystyle r=\frac{1}{2}\sin \theta}{\cos \theta\)

\(\displaystyle r=\frac{1}{2}\tan \theta}{\sec \theta\)

\(\displaystyle r=\frac{1}{2}\cos \theta}{\tan \theta\)

Correct answer:

\(\displaystyle r=\frac{1}{2}\tan \theta}{\sec \theta\)

Explanation:

We can convert from rectangular form to polar form by using the following identities: \(\displaystyle y=r\sin \theta\) and \(\displaystyle x=r\cos \theta\). Given \(\displaystyle y=2x^{2}\), then \(\displaystyle r\sin \theta=2(r\cos \theta )^{2}=2r^{2}\cos^{2} \theta\).

\(\displaystyle r\sin \theta=2(r\cos \theta )^{2}=2r^{2}\cos^{2} \theta\). Dividing both sides by \(\displaystyle r\cos \theta\),

\(\displaystyle \tan \theta=2r\cos \theta\)

\(\displaystyle \frac{\tan \theta}{\cos \theta}=2r\)

\(\displaystyle \tan \theta}{\sec \theta=2r\)

\(\displaystyle \frac{1}{2}\tan \theta}{\sec \theta=r\)

 

Learning Tools by Varsity Tutors