Calculus 2 : Polar Form

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Polar Form

What would be the equation of the parabola \(\displaystyle \small y=x^{2}\) in polar form?

Possible Answers:

\(\displaystyle \small r=cot\theta cos\theta\)

\(\displaystyle \small \small \small r=tan\theta sin\theta\)

\(\displaystyle \small r=tan\theta sec\theta\)

\(\displaystyle \small \small r=cot\theta csc\theta\)

\(\displaystyle \small r=\theta ^{2}\)

Correct answer:

\(\displaystyle \small r=tan\theta sec\theta\)

Explanation:

We know \(\displaystyle \small y=rsin\theta\) and \(\displaystyle \small x=rcos\theta\).

Subbing that in to the equation \(\displaystyle \small y=x^{2}\) will give us \(\displaystyle \small rsin\theta=r^{2}cos^{2}\theta\).

Multiplying both sides by \(\displaystyle \small 1/(rcos^{2}\theta)\) gives us 

\(\displaystyle \small \small \small \small \small r=sin\theta /cos^{2}\theta=tan\theta/cos\theta=tan\theta\cdot sec\theta\).

Example Question #1 : Polar Form

A point in polar form is given as \(\displaystyle \left(3,\frac{\pi}{3}\right)\).

Find its corresponding \(\displaystyle (x,y)\) coordinate.

Possible Answers:

\(\displaystyle \left(\frac{3}{2},\frac{3\sqrt3}{2}\right)\)

\(\displaystyle (0,3)\)

\(\displaystyle \left(\frac{3\sqrt3}{2},\frac{3}{2}\right)\)

\(\displaystyle \left(\frac{3}{2},\frac{3}{2}\right)\)

\(\displaystyle \left(3,\frac{3\sqrt3}{2}\right)\)

Correct answer:

\(\displaystyle \left(\frac{3}{2},\frac{3\sqrt3}{2}\right)\)

Explanation:

To go from polar form to cartesion coordinates, use the following two relations.

\(\displaystyle x=rcos(\theta)\)

\(\displaystyle y=rsin(\theta)\)

In this case, our \(\displaystyle r\) is \(\displaystyle 3\) and our \(\displaystyle \theta\) is \(\displaystyle \frac{\pi}{3}\).

Plugging those into our relations we get 

\(\displaystyle x=\frac{3}{2}\)

\(\displaystyle y=\frac{3\sqrt3}{2}\)

which gives us our \(\displaystyle (x,y)\) coordinate.

Example Question #1 : Polar Form

What is the magnitude and angle (in radians) of the following cartesian coordinate?

\(\displaystyle (3,4)\)

Give the answer in the format below.

\(\displaystyle (r,\theta)\)

Possible Answers:

\(\displaystyle (5,0.927)\)

\(\displaystyle (3,1.04)\)

\(\displaystyle (12,0.707)\)

\(\displaystyle (4,0.927)\)

\(\displaystyle (5,0.643)\)

Correct answer:

\(\displaystyle (5,0.927)\)

Explanation:

Although not explicitly stated, the problem is asking for the polar coordinates of the point \(\displaystyle (3,4)\). To calculate the magnitude, \(\displaystyle r\), calculate the following:

\(\displaystyle r=\sqrt{x^2+y^2}\)

\(\displaystyle r=5\)

To calculate \(\displaystyle \theta\), do the following:

\(\displaystyle \theta=tan^{-1}\left(\frac{y}{x}\right)\) in radians. (The problem asks for radians)

\(\displaystyle \theta = 0.927\)

 

Example Question #1 : Polar Form

What is the following coordinate in polar form?

\(\displaystyle (-2,-5)\)

Provide the angle in degrees.

Possible Answers:

\(\displaystyle (16,112)\)

\(\displaystyle (10,248)\)

\(\displaystyle (\sqrt{29},202)\)

\(\displaystyle (\sqrt{29},68)\)

\(\displaystyle (\sqrt{29},248)\)

Correct answer:

\(\displaystyle (\sqrt{29},248)\)

Explanation:

To calculate the polar coordinate, use

\(\displaystyle r=\sqrt{x^2+y^2}\)

\(\displaystyle r=\sqrt{29}\)

\(\displaystyle \theta=tan^{-1}\left(\frac{y}{x}\right)=68\)

However, keep track of the angle here. 68 degree is the mathematical equivalent of the expression, but we know the point (-2,-5) is in the 3rd quadrant, so we have to add 180 to it to get 248.

Some calculators might already have provided you with the correct answer.

\(\displaystyle \theta=248\).

Example Question #1 : Polar Form

What is the equation \(\displaystyle y=2x^{2}\) in polar form?

Possible Answers:

\(\displaystyle r=\frac{1}{2}\cos \theta}{\tan \theta\)

\(\displaystyle r=\frac{1}{2}\tan \theta}{\sec \theta\)

\(\displaystyle r=\frac{1}{2}\sin \theta}{\tan \theta\)

\(\displaystyle r=\frac{1}{2}\sin \theta}{\cos \theta\)

\(\displaystyle r=\frac{1}{2}\sin \theta}{\sec \theta\)

Correct answer:

\(\displaystyle r=\frac{1}{2}\tan \theta}{\sec \theta\)

Explanation:

We can convert from rectangular form to polar form by using the following identities: \(\displaystyle y=r\sin \theta\) and \(\displaystyle x=r\cos \theta\). Given \(\displaystyle y=2x^{2}\), then \(\displaystyle r\sin \theta=2(r\cos \theta )^{2}=2r^{2}\cos^{2} \theta\).

\(\displaystyle r\sin \theta=2(r\cos \theta )^{2}=2r^{2}\cos^{2} \theta\). Dividing both sides by \(\displaystyle r\cos \theta\),

\(\displaystyle \tan \theta=2r\cos \theta\)

\(\displaystyle \frac{\tan \theta}{\cos \theta}=2r\)

\(\displaystyle \tan \theta}{\sec \theta=2r\)

\(\displaystyle \frac{1}{2}\tan \theta}{\sec \theta=r\)

 

Example Question #202 : Ap Calculus Bc

What is the equation \(\displaystyle y=\frac{6}{x}\) in polar form?

Possible Answers:

\(\displaystyle r=\sqrt\frac{6}{\sin \theta cos \theta}\)

\(\displaystyle r=\sqrt\frac{6}{\cos \theta}\)

\(\displaystyle r=\sqrt\frac{6}{\sin \theta}\)

None of the above

\(\displaystyle r=\sqrt\frac{6}{\tan \theta}\)

Correct answer:

\(\displaystyle r=\sqrt\frac{6}{\sin \theta cos \theta}\)

Explanation:

We can convert from rectangular form to polar form by using the following identities: \(\displaystyle y=r\sin \theta\) and \(\displaystyle x=r\cos \theta\). Given \(\displaystyle y=\frac{6}{x}\), then \(\displaystyle r\sin \theta=\frac{6}{r\cos \theta}\). Multiplying both sides by \(\displaystyle r\cos \theta\),

\(\displaystyle r^{2}\sin \theta cos \theta=6\)

\(\displaystyle r^{2}=\frac{6}{\sin \theta cos \theta}\)

\(\displaystyle r=\sqrt\frac{6}{\sin \theta cos \theta}\)

Example Question #1 : Polar Form

What is the equation \(\displaystyle y=\frac{7}{3}x^{2}\) in polar form?

Possible Answers:

None of the above

\(\displaystyle r=\frac{7}{3}\cos \theta\sin \theta\)

\(\displaystyle r=\frac{7}{3}\tan \theta\sec \theta\)

\(\displaystyle r=\frac{3}{7}\tan \theta\sec \theta\)

\(\displaystyle r=\frac{3}{7}\cos \theta\sin \theta\)

Correct answer:

\(\displaystyle r=\frac{3}{7}\tan \theta\sec \theta\)

Explanation:

We can convert from rectangular form to polar form by using the following identities: \(\displaystyle y=r\sin \theta\) and \(\displaystyle x=r\cos \theta\). Given \(\displaystyle y=\frac{7}{3}x^{2}\), then \(\displaystyle r\sin \theta=\frac{7}{3}{r^{2}\cos^{2} \theta}\). Simplifying accordingly, 

\(\displaystyle \tan \theta=\frac{7}{3}{r\cos\theta}\)

\(\displaystyle \tan \theta\sec \theta =\frac{7}{3}r\)

\(\displaystyle \frac{3}{7}\tan \theta\sec \theta =r\)

Example Question #6 : Polar Form

Given \(\displaystyle x=3t+15\) and \(\displaystyle y=15t-6\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=15x-81\)

\(\displaystyle y=5x-81\)

\(\displaystyle y=5x-3\)

\(\displaystyle y=15x-3\)

\(\displaystyle y=5x-15\)

Correct answer:

\(\displaystyle y=5x-81\)

Explanation:

Knowing that \(\displaystyle x=3t+15\) and \(\displaystyle y=15t-6\), we can isolate \(\displaystyle t\) in both equations as follows:

\(\displaystyle x=3t+15\rightarrow t=\frac{x-15}{3}\)

\(\displaystyle y=15t-6\rightarrow t=\frac{y+6}{15}\)

Since both of these equations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y+6}{15}=\frac{x-15}{3}\)

\(\displaystyle y+6=15(\frac{x-15}{3})\)

\(\displaystyle y+6=5({x-15})\)

\(\displaystyle y+6=5x-75\)

\(\displaystyle y=5x-81\)

 

Example Question #1 : Polar Form

Convert the following function into polar form:

\(\displaystyle f(x)=2x^2+5x+2+2y^2\)

Possible Answers:

\(\displaystyle r^2+1+5r\cos(\theta)\)

\(\displaystyle r^2+\sin(\theta)\)

\(\displaystyle 2r^2+5r\sin(\theta)+2\)

\(\displaystyle 2r^2+5r\cos(\theta )+2\)

Correct answer:

\(\displaystyle 2r^2+5r\cos(\theta )+2\)

Explanation:

The following formulas were used to convert the function from polar to Cartestian coordinates:

\(\displaystyle x=r\cos(\theta), y=r\sin(\theta), x^2+y^2=r^2\)

Note that the last formula is a manipulation of a trignometric identity.

Simply replace these with x and y in the original function.

\(\displaystyle f(x)=2x^2+5x+2+2y^2\)

\(\displaystyle f(x)=(x^2+y^2)2+5x+2\)

\(\displaystyle f(x)=2r^2+5rcos(\theta)+2\)

Example Question #1 : Polar Form

Convert from rectangular to polar form:

\(\displaystyle (2, 2)\)

Possible Answers:

\(\displaystyle (0, \pi)\)

\(\displaystyle \left(-2\sqrt{2}, \frac{\pi}{4}\right)\)

\(\displaystyle \left(\sqrt{2}, \frac{\pi}{4}\right)\)

\(\displaystyle \left(2\sqrt{2}, \frac{\pi}{4}\right)\)

Correct answer:

\(\displaystyle \left(2\sqrt{2}, \frac{\pi}{4}\right)\)

Explanation:

To convert from rectangular to polar form, we must use the following formulas:

\(\displaystyle x=r\cos(\theta), y=r\sin(\theta)\)

\(\displaystyle \frac{y}{x}=\tan(\theta)\)

It is easier to find our angle \(\displaystyle \theta\) first, which is done by plugging in our x and y into the second formula:

 \(\displaystyle \frac{2}{2}=\tan(\theta)=1\)

Find the angle by taking the inverse of the function:

\(\displaystyle \tan^{-1}(\tan(\theta))=\tan^{-1}(1)\)

\(\displaystyle \theta=\frac{\pi}{4}\)

Now find r by plugging in our angle and x and y into the first formula, and solving for r:

\(\displaystyle 2=r\cos\left(\frac{\pi}{4}\right)\)

\(\displaystyle r=2\sqrt{2}\)

Our final answer is reported in polar coordinate form \(\displaystyle (r, \theta)\):

\(\displaystyle \left(2\sqrt{2}, \frac{\pi}{4}\right)\)

 

 

 

Learning Tools by Varsity Tutors