Calculus 3 : Equations of Lines and Planes

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #111 : Calculus 3

Write down the equation of the line in vector form that passes through the points , and .

Possible Answers:

Correct answer:

Explanation:

Remember the general equation of a line in vector form:

, where  is the starting point, and  is the difference between the start and ending points.

Lets apply this to our problem.

Distribute the 

Now we simply do vector addition to get

Example Question #1 : 3 Dimensional Space

Find the approximate angle between the planes , and .

Possible Answers:

None of the other answers.

Correct answer:

Explanation:

Finding the angle between two planes requires us to find the angle between their normal vectors.

To obtain normal vectors, we simply take the coefficients in front of .

The (acute) angle between any two vector is

,

Substituting, we have

.

Example Question #1 : 3 Dimensional Space

Find the point of intersection of the plane  and the line described by 

Possible Answers:

The line and the plane are parallel.

Correct answer:

Explanation:

Substituting the components of the line into those of the plane, we have

Substituting this value of  back into the components of the line gives us

.

Example Question #2 : 3 Dimensional Space

Find the angle (in degrees) between the planes ,

Possible Answers:

Correct answer:

Explanation:

A quick way to notice the answer is is to notice the planes are parallel (They only differ by the constant on the right side).

Typically though, to find the angle between two planes, we find the angle between their normal vectors.

A vector normal to the first plane is

A vector normal to the second plane is

Then using the formula for the angle between vectors, , we have

.

Example Question #2 : 3 Dimensional Space

Determine the equation of the plane that contains the following points. 

Possible Answers:

Correct answer:

Explanation:

The equation of a plane is defined as

where  is the normal vector of the plane. 

To find the normal vector, we first get two vectors on the plane 

 and 

and find their cross product. 

The cross product is defined as the determinant of the matrix

Which is

Which tells us the normal vector is 

Using the point  and the normal vector to find the equation of the plane yields

Simplified gives the equation of the plane 

 

Example Question #2 : 3 Dimensional Space

Find the equation of the plane containing the points

 

Possible Answers:

Correct answer:

Explanation:

The equation of a plane is defined as

where  is the normal vector of the plane. 

To find the normal vector, we first get two vectors on the plane 

 and 

and find their cross product. 

The cross product is defined as the determinant of the matrix

Which is

Which tells us the normal vector is 

Using the point  and the normal vector to find the equation of the plane yields

Simplified gives the equation of the plane 



Example Question #2 : Equations Of Lines And Planes

Which of the following is an equation of a plane parallel to the plane ?

Possible Answers:

None of the other answers

Correct answer:

Explanation:

Planes that are parallel to each other only differ (if at all) by the constant on the right-hand side (when both sides are simplified). Since has the same coefficients as the given plane, they are parallel to each other.

Example Question #3 : 3 Dimensional Space

Find a parametric representation of the curve of intersection of the cylinder  and the plane .

Possible Answers:

Correct answer:

Explanation:

We can begin by rewriting the expression for the cylinder as follows

.

This tells us that .  Plugging this back into the equation for the plane  to find .

This gives us the representation of the curve of intersection as

.

Example Question #1 : Equations Of Lines And Planes

Find the equation of the plane containing the following points

Possible Answers:

Correct answer:

Explanation:

The equation of a plane is defined as

 

where 

 

 is the normal vector of the plane. 

To find the normal vector, we first get two vectors on the plane 

 

 and 

 

and find their cross product. 

The cross product is defined as the determinant of the matrix

 

Which is

 

 

 

Which tells us the normal vector is 

 

Using the point 

 

 and the normal vector to find the equation of the plane yields

 

 

 

Simplified gives the equation of the plane 

Example Question #10 : Equations Of Lines And Planes

Find the angle in degrees between the planes  and 

Possible Answers:

None of the other answers

Correct answer:

Explanation:

To find the angle between the planes, we find the angle between their normal vectors.

We have

, for the first plane, and

, for the second plane.

The angle between these two vectors is

Learning Tools by Varsity Tutors