Calculus 3 : Equations of Lines and Planes

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Equations Of Lines And Planes

Write down the equation of the line in vector form that passes through the points \displaystyle (2, 10 , -6), and \displaystyle (-3, 4, 14).

Possible Answers:

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 1+t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2-5t, 10+6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10-6t, -6-20t\right \rangle

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-2t\right \rangle

Correct answer:

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

Explanation:

Remember the general equation of a line in vector form:

\displaystyle \vec{r}=r_0+t\vec{v}=\left \langle x_0,y_0,z_0\right \rangle+t\left \langle a,b,c\right \rangle, where \displaystyle \left \langle x_0,y_0,z_0\right \rangle is the starting point, and \displaystyle \left \langle a,b,c\right \rangle is the difference between the start and ending points.

Lets apply this to our problem.

\displaystyle \vec{r}=\left \langle 2, 10, -6\right \rangle+t\left \langle 5, 6, -20\right \rangle

Distribute the \displaystyle t

\displaystyle \vec{r}=\left \langle 2, 10, -6\right \rangle+\left \langle 5t, 6t, -20t\right \rangle

Now we simply do vector addition to get

\displaystyle \vec{r}=\left \langle 2+5t, 10+6t, -6-20t\right \rangle

Example Question #1 : Equations Of Lines And Planes

Find the approximate angle between the planes \displaystyle 4x-3y-2z=1, and \displaystyle 12x+2y-7z=16.

Possible Answers:

\displaystyle 42.192

\displaystyle 52.388

\displaystyle 82.1

\displaystyle 32.712

None of the other answers.

Correct answer:

\displaystyle 42.192

Explanation:

Finding the angle between two planes requires us to find the angle between their normal vectors.

To obtain normal vectors, we simply take the coefficients in front of \displaystyle x,y,z.

\displaystyle \mathbf{n_1} = < 4,-3,-2>

\displaystyle \mathbf{n_2} = < 12,2,-7>

The (acute) angle between any two vector is

\displaystyle \theta = \cos^{-1}(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}),

Substituting, we have

\displaystyle \theta = \cos^{-1}(\frac{< 4,-3,-2> \cdot < 12,2,-7>}{\sqrt{16+9+4}\sqrt{144+4+49}})

\displaystyle \theta = \cos^{-1}(\frac{< 4,-3,-2> \cdot < 12,2,-7>}{\sqrt{16+9+4}\sqrt{144+4+49}})

\displaystyle \theta \approx \cos^{-1}(\frac{56}{75.584})

\displaystyle \theta \approx 42.192.

Example Question #2 : 3 Dimensional Space

Find the point of intersection of the plane \displaystyle 2x+y+z=9 and the line described by \displaystyle < 2t+4,t-1,-t>

Possible Answers:

The line and the plane are parallel.

\displaystyle (-1,2,-1)

\displaystyle (0,0,\frac{1}{2})

\displaystyle (5,-\frac{1}{2}, -\frac{1}{2})

\displaystyle (-\frac{1}{2},5,\frac{1}{2})

Correct answer:

\displaystyle (5,-\frac{1}{2}, -\frac{1}{2})

Explanation:

Substituting the components of the line into those of the plane, we have

\displaystyle 2(2t+4)+(t-1)+(-t)=9

\displaystyle 4t+8+t-1-t=9

\displaystyle t = \frac{1}{2}

Substituting this value of \displaystyle t back into the components of the line gives us

\displaystyle (5,-\frac{1}{2},-\frac{1}{2}).

Example Question #2 : 3 Dimensional Space

Find the angle (in degrees) between the planes \displaystyle x+y+z =2, \displaystyle x+y+z = 0

Possible Answers:

\displaystyle 47.333

\displaystyle 30

\displaystyle 90

\displaystyle 42.667

\displaystyle 0

Correct answer:

\displaystyle 0

Explanation:

A quick way to notice the answer is \displaystyle 0 is to notice the planes are parallel (They only differ by the constant on the right side).

Typically though, to find the angle between two planes, we find the angle between their normal vectors.

A vector normal to the first plane is \displaystyle \mathbf{n}_1 = < 1,1,1>

A vector normal to the second plane is \displaystyle \mathbf{n}_2 = < 1,1,1>

Then using the formula for the angle between vectors, \displaystyle \theta = \cos^{-1} (\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}), we have

\displaystyle \theta = \cos^{-1} (\frac{< 1,1,1> \cdot < 1,1,1>}{\sqrt{1^2+1^2+1^2} \sqrt{1^2+1^2+1^2}}) = \cos^{-1}(1) = 0.

Example Question #3 : 3 Dimensional Space

Determine the equation of the plane that contains the following points. 

\displaystyle O=(0,0,0)

\displaystyle P=(5,4,0)

\displaystyle Q=(-3,-7,0)

Possible Answers:

\displaystyle 5x-7y+z=4

\displaystyle y=0

\displaystyle z=0

\displaystyle x=0

Correct answer:

\displaystyle z=0

Explanation:

The equation of a plane is defined as

\displaystyle n\bullet< x-x_0,y-y_0,z-z_0>=0

where \displaystyle n is the normal vector of the plane. 

To find the normal vector, we first get two vectors on the plane 

\displaystyle OP=< 5,4,0> and \displaystyle OQ=< -3,-7,0>

and find their cross product. 

The cross product is defined as the determinant of the matrix

\displaystyle \begin{vmatrix} i&j &k \\ 5&4 &0 \\ -3&-7 &0 \end{vmatrix}

Which is

\displaystyle =det(\begin{vmatrix} 4&0 \\ -7&0 \end{vmatrix})i-det(\begin{vmatrix} 5&0 \\ -3&0 \end{vmatrix})j+det(\begin{vmatrix} 5&4 \\ -3&-7 \end{vmatrix})k

\displaystyle =(4*0-(-7)*0)i-(5*0-(-3)*0)j+(5*(-7)-(-3)*4)k

\displaystyle =-23k

Which tells us the normal vector is 

\displaystyle < 0,0,-23>

Using the point \displaystyle O and the normal vector to find the equation of the plane yields

\displaystyle < 0,0,-23>\bullet < x-0,y-0,z-0>=0

\displaystyle < 0,0,-23>\bullet < x,y,z>=0

\displaystyle 0x+0y+(-23)z=0

Simplified gives the equation of the plane 

\displaystyle z=0

 

Example Question #2 : Equations Of Lines And Planes

Find the equation of the plane containing the points

\displaystyle O=(0,0,0) P=(0,1,5) Q=(0,-2,-4)

 

Possible Answers:

\displaystyle z=5

\displaystyle x=0

\displaystyle y-4z=1

\displaystyle y=0

Correct answer:

\displaystyle x=0

Explanation:

The equation of a plane is defined as

\displaystyle n\bullet< x-x_0,y-y_0,z-z_0>=0

where \displaystyle n is the normal vector of the plane. 

To find the normal vector, we first get two vectors on the plane 

\displaystyle OP=< 0,1,5> and \displaystyle OQ=< 0,-2,-4>

and find their cross product. 

The cross product is defined as the determinant of the matrix

\displaystyle \begin{vmatrix} i&j &k \\ 0&1 &5 \\ 0&-2 &-4 \end{vmatrix}

Which is

\displaystyle =det(\begin{vmatrix}1&5 \\ -2&-4 \end{vmatrix})i-det(\begin{vmatrix} 0&5 \\ 0&-4 \end{vmatrix})j+det(\begin{vmatrix} 0&1 \\ 0&-2 \end{vmatrix})k

\displaystyle =(1*(-4)-(-2)*5)i-(0*(-4)-(0)*5)j+(0*(-2)-0*1)k

\displaystyle =6i

Which tells us the normal vector is 

\displaystyle < 6,0,0>

Using the point \displaystyle O and the normal vector to find the equation of the plane yields

\displaystyle < 6,0,0>\bullet < x-0,y-0,z-0>=0

\displaystyle < 6,0,0>\bullet < x,y,z>=0

\displaystyle 6x+0y+0z=0

Simplified gives the equation of the plane 

\displaystyle x=0



Example Question #1 : Equations Of Lines And Planes

Which of the following is an equation of a plane parallel to the plane \displaystyle x+4y-3z=10?

Possible Answers:

\displaystyle x+8y-3z=5

\displaystyle 2x+4y-3z =5

None of the other answers

\displaystyle x+4y-6z=5

\displaystyle x+4y-3z =5

Correct answer:

\displaystyle x+4y-3z =5

Explanation:

Planes that are parallel to each other only differ (if at all) by the constant on the right-hand side (when both sides are simplified). Since \displaystyle x+4y-3z =5 has the same \displaystyle x,y,z coefficients as the given plane, they are parallel to each other.

Example Question #3 : 3 Dimensional Space

Find a parametric representation of the curve of intersection of the cylinder \displaystyle 9x^2+y^2=9 and the plane \displaystyle x+y+z=7.

Possible Answers:

\displaystyle \vec{r}(t)= \left< \cos t, 3 \sin t, 7-\cos t - 3 \sin t\right>

\displaystyle \vec{r}(t)= \left< \cos t, \sin t, 7-\cos t - \sin t\right>

\displaystyle \vec{r}(t)= \left< \cos t, 3 \sin 3t, 7-\cos t - 3 \sin 3t\right>

\displaystyle \vec{r}(t)= \left< \cos t, 9 \sin t, 7-\cos t - 9 \sin t\right>

Correct answer:

\displaystyle \vec{r}(t)= \left< \cos t, 3 \sin t, 7-\cos t - 3 \sin t\right>

Explanation:

We can begin by rewriting the expression for the cylinder as follows

\displaystyle 9x^2 + y^2 = 9 \Rightarrow x^2 + \left( \frac{y}{3} \right) ^2 = 1.

This tells us that \displaystyle x = \cos t, y = 3 \sin t.  Plugging this back into the equation for the plane \displaystyle x + y + z = 7 to find \displaystyle z = 7 - x - y = 7 - \cos t - 3 \sin t.

This gives us the representation of the curve of intersection as

\displaystyle \vec{r}(t)= \left< \cos t, 3 \sin t, 7-\cos t - 3 \sin t\right>.

Example Question #1 : Equations Of Lines And Planes

Find the equation of the plane containing the following points

\displaystyle O=(2,3,4)

\displaystyle P=(1,5,3)

\displaystyle Q=(5,2,1)

Possible Answers:

\displaystyle x+5y+3z=0

\displaystyle 5x-6y+7z=20

\displaystyle 2x-2y+z=0

\displaystyle 5x-3y+z=4

Correct answer:

\displaystyle 5x-6y+7z=20

Explanation:

The equation of a plane is defined as

\displaystyle n\bullet< x-x_0,y-y_0,z-z_0>=0 

where 

\displaystyle n 

 is the normal vector of the plane. 

To find the normal vector, we first get two vectors on the plane 

 \displaystyle OP=< 1-2,5-3,3-4>=< -1,-2,-1>

 and 

 \displaystyle OQ=< 5-2,2-3,1-4>=< 3,-1,-3>

and find their cross product. 

The cross product is defined as the determinant of the matrix

\displaystyle \begin{vmatrix} i&j &k \\ -1&-2 &-1 \\ 3&-1 &-3 \end{vmatrix} 

Which is

 \displaystyle =det(\begin{vmatrix} -2&-1 \\ -1&-3 \end{vmatrix})i-det(\begin{vmatrix} -1&-1 \\ 3&-3 \end{vmatrix})j+det(\begin{vmatrix} -1&-2 \\ 3&-1 \end{vmatrix})k

\displaystyle =(-2(-3)-(-1)*(-1))i-(-1(-3)-3(-1))j+(-1(-1)-3(-2))k 

\displaystyle =5i-6j+7k 

Which tells us the normal vector is 

 \displaystyle < 5,-6,7>

Using the point 

 \displaystyle O=(2,3,4)

 and the normal vector to find the equation of the plane yields

 \displaystyle < 5,-6,7>\bullet< x-2,y-3,z-4>=0

\displaystyle 5(x-2)+(-6)(y-3)+7(z-4)=0 

 \displaystyle 5x-10-6y+18+7z-28=0

Simplified gives the equation of the plane 

\displaystyle 5x-6y+7z=20

Example Question #10 : Equations Of Lines And Planes

Find the angle in degrees between the planes \displaystyle x+5y-z = 0 and \displaystyle x+z =0

Possible Answers:

\displaystyle 67.002

None of the other answers

\displaystyle 74.207

\displaystyle 23.669

\displaystyle 14.282

Correct answer:

\displaystyle 74.207

Explanation:

To find the angle between the planes, we find the angle between their normal vectors.

We have

\displaystyle \mathbf{n}_1 = < 1,5,-1>, for the first plane, and

\displaystyle \mathbf{n}_2 = < 1,0,-1>, for the second plane.

The angle between these two vectors is

\displaystyle \theta = \cos^{-1}(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\|\mathbf{n}_1\|\|\mathbf{n}_2\|})

\displaystyle = \cos^{-1}(\frac{< 1,5,-1> \cdot < 1,0,-1>}{\sqrt{1^2+(-5)^2+(-1)^2}\sqrt{1^2+0^2+(-1)^2}})

\displaystyle \approx \cos^{-1}(\frac{2}{7.34847}) \approx 74.207

Learning Tools by Varsity Tutors