Calculus 3 : Partial Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Partial Derivatives

Evaluate:

\(\displaystyle \lim_{(x,y)\rightarrow (0,1)} \frac{x^2+xy}{y}\)

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle 0\)

\(\displaystyle -\infty\)

Does not exist

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0\)

Explanation:

Since we won't have any divided by zero problems, we can just evaluate at the point.

\(\displaystyle \lim_{(x,y)\rightarrow (0,1)} \frac{x^2+xy}{y}=\frac{0^2+0\cdot1}{1}=0\)

Example Question #1 : Partial Derivatives

Calculate the following limit.

\(\displaystyle \small \lim_{(x,y)\to (1,0)} x^2+2xy+y^2\)

Possible Answers:

\(\displaystyle \small 2\)

\(\displaystyle \small \frac{1}{2}\)

\(\displaystyle \small 1\)

\(\displaystyle \small 0\)

Correct answer:

\(\displaystyle \small 1\)

Explanation:

We can calculate the limit

\(\displaystyle \small \lim_{(x,y)\to (1,0)} x^2+2xy+y^2\)

by simply plugging in \(\displaystyle \small (x,y)=(1,0)\) because the value is defined at \(\displaystyle \small (1,0)\) and around that point.

So we get

\(\displaystyle \small \small \lim_{(x,y)\to (1,0)} x^2+2xy+y^2=1^2+2\cdot 0\cdot 1+0^2=1\).

Example Question #2 : Partial Derivatives

Calculate the following limit.

\(\displaystyle \small \small \lim_{(x,y)\to (2,1)} 2x-5y\)

Possible Answers:

\(\displaystyle \small 2\)

\(\displaystyle \small -1\)

\(\displaystyle \small 1\)

\(\displaystyle \small \frac{1}{2}\)

Correct answer:

\(\displaystyle \small -1\)

Explanation:

We can calculate the limit

\(\displaystyle \small \small \lim_{(x,y)\to (2,1)} 2x-5y\)

by simply plugging in \(\displaystyle \small \small (x,y)=(2,1)\) because the value is defined at \(\displaystyle \small \small (2,1)\) and at every value in \(\displaystyle \small \mathbb{R}^2\).

So we get

\(\displaystyle \small \small \small \lim_{(x,y)\to (2,1)} 2x-5y=2\cdot 2-5\cdot1=4-5=-1\).

Example Question #3 : Partial Derivatives

Evaluate \(\displaystyle \lim_{(x,y)\to(0,0)}\frac{6x}{x^2+y}\)

Possible Answers:

None of the other answers

\(\displaystyle 0\)

Does not exist

\(\displaystyle 3\)

\(\displaystyle 6\)

Correct answer:

Does not exist

Explanation:

If we try evaluating the limit along two different paths, \(\displaystyle y=x, y=2x\), we have

\(\displaystyle \lim_{(x,x)\to(0,0)}\frac{6x}{x^2+x}= \lim_{(x,x)\to(0,0)}\frac{6}{x+1} = 6\)

And

\(\displaystyle \lim_{(x,2x)\to(0,0)}\frac{6x}{x^2+(2x)} = \lim_{(x,2x)\to(0,0)}\frac{6}{x+2} = 3\)

Since evaluating along these two paths yielded diffferent values, the limit does not exist.

Example Question #4 : Partial Derivatives

\(\displaystyle \begin{align*}&\text{Evaluate the following limit:}\\&lim_{x\rightarrow13}-\frac{(x - 13)}{(12x - x^{2} + 13)}\end{align*}\)

Possible Answers:

\(\displaystyle -1/14\)

\(\displaystyle \infty\)

\(\displaystyle -\infty\)

\(\displaystyle 1/14\)

Correct answer:

\(\displaystyle 1/14\)

Explanation:

\(\displaystyle \begin{align*}&\text{We cannot simply plug in the value of }x=13\text{, as that would}\\&\text{create a zero value in the denominator. However, note that the expression}\\&-\frac{(x - 13)}{(12x - x^{2} + 13)}\\&\text{can be factored. This will allow us to find the limit:}\\&\frac{(x - 13)}{((x + 1)\cdot (x - 13))}\\&\frac{1}{(x + 1)}\\&lim_{x\rightarrow13}-\frac{(x - 13)}{(12x - x^{2} + 13)}= 1/14\end{align*}\)

Example Question #6 : Limits

\(\displaystyle \begin{align*}&\text{Evaluate the following limit:}\\&lim_{x\rightarrow12}\frac{(7x + x^{2} - 228)}{(1863x - 133x^{2} - 15x^{3} + x^{4} + 1980)}\end{align*}\)

Possible Answers:

\(\displaystyle -\frac{31}{897}\)

\(\displaystyle -\infty\)

\(\displaystyle \infty\)

\(\displaystyle \frac{ 31}{897}\)

Correct answer:

\(\displaystyle -\frac{31}{897}\)

Explanation:

\(\displaystyle \begin{align*}&\text{We cannot simply plug in the value of }x=12\text{, as that would}\\&\text{create a zero value in the denominator. However, note that the expression}\\&\frac{(7x + x^{2} - 228)}{(1863x - 133x^{2} - 15x^{3} + x^{4} + 1980)}\\&\text{can be factored. This will allow us to find the limit:}\\&\frac{((x - 12)\cdot (x + 19))}{((x + 1)\cdot (x + 11)\cdot (x - 12)\cdot (x - 15))}\\&\frac{(x + 19)}{((x + 1)\cdot (x + 11)\cdot (x - 15))}\\&lim_{x\rightarrow12}\frac{(7x + x^{2} - 228)}{(1863x - 133x^{2} - 15x^{3} + x^{4} + 1980)}= -\frac{31}{897}\end{align*}\)

Example Question #7 : Limits

\(\displaystyle \begin{align*}&\text{Evaluate the following limit:}\\&lim_{x\rightarrow2}-\frac{(14x + x^{2} - 32)}{(144x + 11x^{2} - x^{3} - 324)}\end{align*}\)

Possible Answers:

\(\displaystyle \frac{ 9}{88}\)

\(\displaystyle -\frac{9}{88}\)

\(\displaystyle -\infty\)

\(\displaystyle \infty\)

Correct answer:

\(\displaystyle -\frac{9}{88}\)

Explanation:

\(\displaystyle \begin{align*}&\text{We cannot simply plug in the value of }x=2\text{, as that would}\\&\text{create a zero value in the denominator. However, note that the expression}\\&-\frac{(14x + x^{2} - 32)}{(144x + 11x^{2} - x^{3} - 324)}\\&\text{can be factored. This will allow us to find the limit:}\\&\frac{((x - 2)\cdot (x + 16))}{((x - 2)\cdot (x + 9)\cdot (x - 18))}\\&\frac{(x + 16)}{((x + 9)\cdot (x - 18))}\\&lim_{x\rightarrow2}-\frac{(14x + x^{2} - 32)}{(144x + 11x^{2} - x^{3} - 324)}= -\frac{9}{88}\end{align*}\)

Example Question #8 : Limits

\(\displaystyle \begin{align*}&\text{Evaluate the following limit:}\\&lim_{x\rightarrow13}-\frac{(9x - x^{2} + 52)}{(2x + x^{2} - 195)}\end{align*}\)

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle \frac{ 17}{28}\)

\(\displaystyle -\infty\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle \frac{ 17}{28}\)

Explanation:

\(\displaystyle \begin{align*}&\text{We cannot simply plug in the value of }x=13\text{, as that would}\\&\text{create a zero value in the denominator. However, note that the expression}\\&-\frac{(9x - x^{2} + 52)}{(2x + x^{2} - 195)}\\&\text{can be factored. This will allow us to find the limit:}\\&\frac{((x + 4)\cdot (x - 13))}{((x - 13)\cdot (x + 15))}\\&\frac{(x + 4)}{(x + 15)}\\&lim_{x\rightarrow13}-\frac{(9x - x^{2} + 52)}{(2x + x^{2} - 195)}=\frac{ 17}{28}\end{align*}\)

Example Question #9 : Limits

\(\displaystyle \begin{align*}&\text{Evaluate the following limit:}\\&lim_{x\rightarrow-1}-\frac{(x + 1)}{(3576x + 98x^{2} - 23x^{3} - x^{4} + 3456)}\end{align*}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle -\infty\)

\(\displaystyle \infty\)

\(\displaystyle -\frac{1}{3315}\)

Correct answer:

\(\displaystyle -\frac{1}{3315}\)

Explanation:

\(\displaystyle \begin{align*}&\text{We cannot simply plug in the value of }x=-1\text{, as that would}\\&\text{create a zero value in the denominator. However, note that the expression}\\&-\frac{(x + 1)}{(3576x + 98x^{2} - 23x^{3} - x^{4} + 3456)}\\&\text{can be factored. This will allow us to find the limit:}\\&\frac{(x + 1)}{((x + 1)\cdot (x - 12)\cdot (x + 16)\cdot (x + 18))}\\&\frac{1}{((x - 12)\cdot (x + 16)\cdot (x + 18))}\\&lim_{x\rightarrow-1}-\frac{(x + 1)}{(3576x + 98x^{2} - 23x^{3} - x^{4} + 3456)}= -\frac{1}{3315}\end{align*}\)

Example Question #10 : Limits

\(\displaystyle \begin{align*}&\text{Evaluate the following limit:}\\&lim_{x\rightarrow-18}-\frac{(x - x^{2} + 342)}{(764x + 48x^{2} + x^{3} + 4032)}\end{align*}\)

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle -\frac{37}{8}\)

\(\displaystyle -\infty\)

\(\displaystyle \frac{ 37}{8}\)

Correct answer:

\(\displaystyle -\frac{37}{8}\)

Explanation:

\(\displaystyle \begin{align*}&\text{We cannot simply plug in the value of }x=-18\text{, as that would}\\&\text{create a zero value in the denominator. However, note that the expression}\\&-\frac{(x - x^{2} + 342)}{(764x + 48x^{2} + x^{3} + 4032)}\\&\text{can be factored. This will allow us to find the limit:}\\&\frac{((x + 18)\cdot (x - 19))}{((x + 14)\cdot (x + 16)\cdot (x + 18))}\\&\frac{(x - 19)}{((x + 14)\cdot (x + 16))}\\&lim_{x\rightarrow-18}-\frac{(x - x^{2} + 342)}{(764x + 48x^{2} + x^{3} + 4032)}= -\frac{37}{8}\end{align*}\)

Learning Tools by Varsity Tutors