Common Core: 6th Grade Math : Make Tables of Equivalent Ratios, Find Missing Values, and Plot Values on a Coordinate Plane: CCSS.Math.Content.6.RP.A.3a

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Make Tables Of Equivalent Ratios, Find Missing Values, And Plot Values On A Coordinate Plane: Ccss.Math.Content.6.Rp.A.3a

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 25\) workers?

Possible Answers:

\(\displaystyle 12\ \text{managers}\)

\(\displaystyle 2\ \text{managers}\)

\(\displaystyle 8\ \text{managers}\)

\(\displaystyle 6\ \text{managers}\)

\(\displaystyle 10\ \text{managers}\)

Correct answer:

\(\displaystyle 10\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 25\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 10\ \text{managers}\).

 

Example Question #1 : Make Tables Of Equivalent Ratios, Find Missing Values, And Plot Values On A Coordinate Plane: Ccss.Math.Content.6.Rp.A.3a

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 5\) workers?

Possible Answers:

\(\displaystyle 2\ \text{managers}\)

\(\displaystyle 6\ \text{managers}\)

\(\displaystyle 4\ \text{managers}\)

\(\displaystyle 8\ \text{managers}\)

\(\displaystyle 1\ \text{manager}\)

Correct answer:

\(\displaystyle 2\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 5\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 2\ \text{managers}\).

Example Question #21 : Ratios & Proportional Relationships

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 15\) workers?

Possible Answers:

\(\displaystyle 3\ \text{managers}\)

\(\displaystyle 4\ \text{managers}\)

\(\displaystyle 6\ \text{managers}\)

\(\displaystyle 5\ \text{managers}\)

\(\displaystyle 8\ \text{managers}\)

Correct answer:

\(\displaystyle 6\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 15\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 6\ \text{managers}\).

 

Example Question #22 : Ratios & Proportional Relationships

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 10\) workers?

Possible Answers:

\(\displaystyle 2\ \text{managers}\)

\(\displaystyle 6\ \text{managers}\)

\(\displaystyle 3\ \text{managers}\)

\(\displaystyle 4\ \text{managers}\)

\(\displaystyle 1\ \text{manager}\)

Correct answer:

\(\displaystyle 4\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 10\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 4\ \text{managers}\).

 

Example Question #42 : Ratio And Proportion

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 60\) workers?

Possible Answers:

\(\displaystyle 18\ \text{managers}\)

\(\displaystyle 23\ \text{managers}\)

\(\displaystyle 24\ \text{managers}\)

\(\displaystyle 20\ \text{managers}\)

\(\displaystyle 26\ \text{managers}\)

Correct answer:

\(\displaystyle 24\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 60\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 24\ \text{managers}\).

 

Example Question #43 : Numbers And Operations

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 45\) workers?

Possible Answers:

\(\displaystyle 14\ \text{managers}\)

\(\displaystyle 16\ \text{managers}\)

\(\displaystyle 13\ \text{managers}\)

\(\displaystyle 18\ \text{managers}\)

\(\displaystyle 17\ \text{managers}\)

Correct answer:

\(\displaystyle 18\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 45\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 18\ \text{managers}\).

 

Example Question #4 : Make Tables Of Equivalent Ratios, Find Missing Values, And Plot Values On A Coordinate Plane: Ccss.Math.Content.6.Rp.A.3a

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 20\) workers?

Possible Answers:

\(\displaystyle 6\ \text{managers}\)

\(\displaystyle 7\ \text{managers}\)

\(\displaystyle 6\ \text{managers}\)

\(\displaystyle 4\ \text{managers}\)

\(\displaystyle 8\ \text{managers}\)

Correct answer:

\(\displaystyle 8\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 20\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 8\ \text{managers}\).

 

Example Question #3 : Make Tables Of Equivalent Ratios, Find Missing Values, And Plot Values On A Coordinate Plane: Ccss.Math.Content.6.Rp.A.3a

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 50\) workers?

Possible Answers:

\(\displaystyle 20\ \text{managers}\)

\(\displaystyle 21\ \text{managers}\)

\(\displaystyle 18\ \text{managers}\)

\(\displaystyle 19\ \text{managers}\)

\(\displaystyle 16\ \text{managers}\)

Correct answer:

\(\displaystyle 20\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 50\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 20\ \text{managers}\).

Example Question #33 : Ratios & Proportional Relationships

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 35\) workers?

Possible Answers:

\(\displaystyle 12\ \text{managers}\)

\(\displaystyle 13\ \text{managers}\)

\(\displaystyle 8\ \text{managers}\)

\(\displaystyle 12\ \text{managers}\)

\(\displaystyle 14\ \text{managers}\)

Correct answer:

\(\displaystyle 14\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 35\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 14\ \text{managers}\).

Example Question #33 : Grade 6

At a local microchip factory, there are \(\displaystyle 2\) managers for every \(\displaystyle 5\) workers. How many managers are needed for \(\displaystyle 55\) workers?

Possible Answers:

\(\displaystyle 12\ \text{managers}\)

\(\displaystyle 21\ \text{managers}\)

\(\displaystyle 18\ \text{managers}\)

\(\displaystyle 22\ \text{managers}\)

\(\displaystyle 20\ \text{managers}\)

Correct answer:

\(\displaystyle 22\ \text{managers}\)

Explanation:

In order to solve this problem, we will create a table of proportions using the following ratio.

\(\displaystyle 2\ \text{workers}: 5\ \text{managers}\)

If we solve for the table, then we can find the number of managers needed for \(\displaystyle 55\ \text{workers}\).

 

Table

The factory will need \(\displaystyle 22\ \text{managers}\).

Learning Tools by Varsity Tutors