All GRE Subject Test: Math Resources
Example Questions
Example Question #41 : Derivatives & Integrals
Integrate the following.
Integration by parts follows the formula:
So, our substitutions will be and
which means and
Plugging our substitutions into the formula gives us:
Since , we have:
, or
Example Question #42 : Derivatives & Integrals
Evaluate the following integral.
Integration by parts follows the formula:
In this problem we have so we'll assign our substitutions:
and
which means and
Including our substitutions into the formula gives us:
We can pull out the fraction from the integral in the second part:
Completing the integration gives us:
Example Question #3 : Integrals
Evaluate the following integral.
Integration by parts follows the formula:
Our substitutions will be and
which means and .
Plugging our substitutions into the formula gives us:
Look at the integral: we can pull out the and simplify the remaining as
.
We now solve the integral: , so:
Example Question #3 : Integration By Parts
Evaluate the following integral.
Integration by parts follows the formula:
.
Our substitutions are and
which means and .
Plugging in our substitutions into the formula gives us
We can pull outside of the integral.
Since , we have
Certified Tutor
Certified Tutor