High School Math : Quadrilaterals

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Area Of A Kite

What is the area of a kite with diagonals of 5 and 7?

Possible Answers:

\displaystyle 17.5

\displaystyle 25

\displaystyle 35

\displaystyle 24

Correct answer:

\displaystyle 17.5

Explanation:

To find the area of a kite using diagonals you use the following equation \displaystyle \frac{a*b}{2}=Area\: of a\: kite 

That diagonals (\displaystyle a and \displaystyle b)are the lines created by connecting the two sides opposite of each other.

Plug in the diagonals for \displaystyle a and \displaystyle b to get \displaystyle \frac{5*7}{2}=Area

Then multiply and divide to get the area. \displaystyle \frac{35}{2}=17.5

The answer is \displaystyle 17.5

Example Question #2 : How To Find The Area Of A Kite

Find the area of the following kite:

Kite

Possible Answers:

\displaystyle 27m^2

\displaystyle 78m^2

\displaystyle 26m^2

\displaystyle 39m^2

\displaystyle 54m^2

Correct answer:

\displaystyle 39m^2

Explanation:

The formula for the area of a kite is:

\displaystyle A = \frac{1}{2}(d_{1}\cdot d_{2})

Where \displaystyle d_{1} is the length of one diagonal and \displaystyle d_{2} is the length of the other diagonal

Plugging in our values, we get:

\displaystyle A = \frac{1}{2}(d_{1}\cdot d_{2})

\displaystyle A = \frac{1}{2}(6m\cdot 13m) = 39m^2

Example Question #2 : How To Find The Area Of A Kite

Find the area of the following kite:

Screen_shot_2014-03-01_at_9.16.34_pm

Possible Answers:

\displaystyle 18\sqrt{3}m^2

\displaystyle 18\sqrt{3}-18m^2

\displaystyle 18\sqrt{3}+18m^2

\displaystyle 18m^2

\displaystyle 20m^2

Correct answer:

\displaystyle 18\sqrt{3}+18m^2

Explanation:

The formula for the area of a kite is:

\displaystyle A = \frac{1}{2} (d_1)(d_2)

where \displaystyle d_1 is the length of one diagonal and \displaystyle d_2 is the length of another diagonal.

 

Use the formulas for a \displaystyle 45-45-90 triangle and a \displaystyle 30-60-90 triangle to find the lengths of the diagonals. The formula for a \displaystyle 45-45-90 triangle is \displaystyle a-a-a \sqrt{2} and the formula for a \displaystyle 30-60-90 triangle is \displaystyle a-a \sqrt{3}-2a.

Our \displaystyle 45-45-90 triangle is: \displaystyle 3 \sqrt{2}m-3 \sqrt{2}m-6m

Our \displaystyle 30-60-90 triangle is: \displaystyle 3 \sqrt{2}m-3 \sqrt{6}m-6\sqrt{2}m

 

Plugging in our values, we get:

\displaystyle A = \frac{1}{2} (d_1)(d_2)

\displaystyle A = \frac{1}{2} (6\sqrt{2}m) (3\sqrt{6}m + 3\sqrt{2}m)

\displaystyle A = \frac{1}{2} (18\sqrt{12}+18\sqrt{4}) = 18\sqrt{3}+18m^2

Example Question #1 : Kites

Find the perimeter of the following kite:

Kite

Possible Answers:

\displaystyle 18+\sqrt{10} m

\displaystyle 10+6\sqrt{10} m

\displaystyle 10+9\sqrt{10} m

\displaystyle 16+\sqrt{10} m

\displaystyle 8+6\sqrt{10} m

Correct answer:

\displaystyle 10+6\sqrt{10} m

Explanation:

In order to find the length of the two shorter edges, use a Pythagorean triple:

\displaystyle 3-4-5

\displaystyle 3m-4m-5m

In order to find the length of the two longer edges, use the Pythagorean theorem:

\displaystyle A^2+B^2=C^2

\displaystyle (9)^2+(3)^2=C^2

\displaystyle C^2=90

\displaystyle C=3\sqrt{10}m

The formula of the perimeter of a kite is:

\displaystyle P = 2(side_{short})+2(side_{long})

Plugging in our values, we get:

\displaystyle P = 2(5m)+2(3\sqrt{10}m) = 10+6\sqrt{10}m

Example Question #1 : How To Find The Perimeter Of Kite

Find the perimeter of the following kite:

Screen_shot_2014-03-01_at_9.16.34_pm

Possible Answers:

\displaystyle 12\sqrt{2}m + 12m

\displaystyle 12\sqrt{2}m - 12m

\displaystyle 24m

\displaystyle 12\sqrt{3}m - 12m

\displaystyle 12\sqrt{3}m + 12m

Correct answer:

\displaystyle 12\sqrt{2}m + 12m

Explanation:

The formula for the perimeter of a kite is:

\displaystyle P = 2(s_{long}) + 2(s_{short})

Where \displaystyle s_{long} is the length of the longer side and \displaystyle s_{short} is the length of the shorter side

 

Use the formulas for a \displaystyle 45-45-90 triangle and a \displaystyle 30-60-90 triangle to find the lengths of the longer sides. The formula for a \displaystyle 45-45-90 triangle is \displaystyle a-a-a \sqrt{2} and the formula for a \displaystyle 30-60-90 triangle is \displaystyle a-a \sqrt{3}-2a.

 

Our \displaystyle 45-45-90 triangle is: \displaystyle 3 \sqrt{2}m-3 \sqrt{2}m-6m

Our \displaystyle 30-60-90 triangle is: \displaystyle 3 \sqrt{2}m-3 \sqrt{6}m-6\sqrt{2}m

 

Plugging in our values, we get:

\displaystyle P = 2(6\sqrt{2}m) + 2(6m)

\displaystyle P = 12\sqrt{2}m + 12m

Example Question #1 : Trapezoids

The following quadrilaterals are similar. Solve for \displaystyle x.

Question_9

(Figure not drawn to scale).

Possible Answers:

\displaystyle 7

\displaystyle 4

\displaystyle 3

\displaystyle 3.5

Correct answer:

\displaystyle 3.5

Explanation:

When polygons are similar, the sides will have the same ratio to one another. Set up the appropriate proportions.

\displaystyle \small \frac{2}{8}=\frac{x}{14}

Cross multiply.

\displaystyle \small 28=8x

\displaystyle \small x=3.5

Example Question #1 : Trapezoids

Find the area of the following trapezoid:

Trapezoid

Possible Answers:

\displaystyle 202m^2

\displaystyle 260m^2

\displaystyle 252m^2

\displaystyle 126m^2

\displaystyle 180m^2

Correct answer:

\displaystyle 252m^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A = \frac{1}{2}(b_{1}+b_{2})(h)

Where \displaystyle b_1 is the length of one base, \displaystyle b_2 is the length of the other base, and \displaystyle h is the height.

To find the height of the trapezoid, use a Pythagorean triple:

\displaystyle 5-12-13

\displaystyle 5m-12m-13m

Plugging in our values, we get:

\displaystyle A = \frac{1}{2}(b_{1}+b_{2})(h)

\displaystyle A = \frac{1}{2}(16m+26m)(12m)=252m^2

Example Question #1 : Trapezoids

Find the area of the following trapezoid:

Trapezoid_angles

Possible Answers:

\displaystyle 48+24\sqrt{3}m^2

\displaystyle 96+12\sqrt{3}m^2

\displaystyle 54+24\sqrt{6}m^2

\displaystyle 96+24\sqrt{3}m^2

\displaystyle 60+24\sqrt{3}m^2

Correct answer:

\displaystyle 96+24\sqrt{3}m^2

Explanation:

Use the formula for \displaystyle 30-60-90 triangles in order to find the length of the bottom base and the height.

The formula is:

\displaystyle a-a\sqrt{3}-2a

Where \displaystyle a is the length of the side opposite the .

Beginning with the \displaystyle 12m side, if we were to create a \displaystyle 30-60-90 triangle, the length of the base is \displaystyle 6\sqrt{3}m, and the height is \displaystyle 6m.

Creating another \displaystyle 30-60-90 triangle on the left, we find the height is \displaystyle 6m, the length of the base is \displaystyle 2\sqrt{3}m, and the side is \displaystyle 4\sqrt{3}m.

 

The formula for the area of a trapezoid is:

\displaystyle A = \frac{1}{2}(b_{1}+b_{2})(h)

Where \displaystyle b_1 is the length of one base, \displaystyle b_2 is the length of the other base, and \displaystyle h is the height.

Plugging in our values, we get:

\displaystyle A = \frac{1}{2}(b_{1}+b_{2})(h)

\displaystyle A = \frac{1}{2}(16m+16m+6\sqrt{3}m+2\sqrt{3}m)(6m)

\displaystyle A = \frac{1}{2}(32m+8\sqrt{3}m)(6m)

\displaystyle A = (32m+8\sqrt{3}m)(3m)=96+24\sqrt{3}m^2

Example Question #1 : Quadrilaterals

Determine the area of the following trapezoid:

Screen_shot_2014-02-27_at_6.39.24_pm

Possible Answers:

\displaystyle 25m^2

\displaystyle 28m^2

\displaystyle 24m^2

\displaystyle 20m^2

\displaystyle 35m^2

Correct answer:

\displaystyle 24m^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A=\frac{1}{2}(b_{1}+b_{2})(h),

where \displaystyle b_1 is the length of one base, \displaystyle b_2 is the length of another base, and \displaystyle h is the length of the height.

Plugging in our values, we get:

\displaystyle A=\frac{1}{2}(7m+5m)(4m)=24m^2

Example Question #1 : How To Find The Area Of A Trapezoid

Find the area of the following trapezoid:

Screen_shot_2014-02-27_at_6.47.22_pm

Possible Answers:

\displaystyle 52\sqrt{91}m^2

\displaystyle 48\sqrt{101}m^2

\displaystyle 48\sqrt{81}m^2

\displaystyle 52\sqrt{101}m^2

\displaystyle 48\sqrt{91}m^2

Correct answer:

\displaystyle 48\sqrt{91}m^2

Explanation:

The formula for the area of a trapezoid is:

\displaystyle A=\frac{1}{2}(b_{1}+b_{2})(h),

where \displaystyle b_1 is the length of one base, \displaystyle b_2 is the length of another base, and \displaystyle h is the length of the height.

 

Use the Pythagorean Theorem to find the height of the trapezoid:

\displaystyle A^2+B^2=C^2

\displaystyle 6m^2+B^2=20m^2

\displaystyle B=2\sqrt{91}m

 

Plugging in our values, we get:

\displaystyle A=\frac{1}{2}(18m+30m)(2\sqrt{91}m)=48\sqrt{91}m^2

Learning Tools by Varsity Tutors