HiSET: Math : Angle measure, central angles, and inscribed angles

Study concepts, example questions & explanations for HiSET: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Angle Measure, Central Angles, And Inscribed Angles

Pool shape 

A quadrilateral is shown, and the angle measures of 3 interior angles are given. Find x, the missing angle measure.

Possible Answers:

\displaystyle 128^{\circ}

\displaystyle 52^{\circ}

\displaystyle 228^{\circ}

\displaystyle 94^{\circ}

\displaystyle 33^{\circ}

Correct answer:

\displaystyle 128^{\circ}

Explanation:

The sum of the measures of the interior angles of a quadrilateral is 360 degrees. The sum of the measures of the interior angles of any polygon can be determined using the following formula:

\displaystyle Sum \ of\ Interior \ Angles = 180^{\circ}(n-2), where \displaystyle n is the number of sides.

For example, with a quadrilateral, which has 4 sides, you obtain the following calculation:

\displaystyle Sum \ of\ Interior \ Angles = 180^{\circ}(4-2)=180^{\circ}\cdot2=360^{\circ}

Solving for \displaystyle x requires setting up an algebraic equation, adding all 4 angles to equal 360 degrees:

\displaystyle 50^{\circ}+67^{\circ}+115^{\circ}+x^{\circ}=360^{\circ}

Solving for \displaystyle x is straightforward: subtract the values of the 3 known angles from both sides:

\displaystyle x^{\circ}= 360^{\circ}-50^{\circ}-67^{\circ}-115^{\circ}

\displaystyle x^{\circ}=128^{\circ}

Example Question #2 : Angle Measure, Central Angles, And Inscribed Angles

Intercepted 2

\displaystyle O is the center of the above circle. Calculate \displaystyle m \angle AOB.

Possible Answers:

\displaystyle 135^{\circ }

\displaystyle 140^{\circ }

\displaystyle 120^{\circ }

\displaystyle 130^{\circ }

\displaystyle 125^{\circ }

Correct answer:

\displaystyle 135^{\circ }

Explanation:

\displaystyle \angle AOB is the central angle that intercepts , so 

.

Therefore, we need to find  to obtain our answer.

If the sides of an angle with vertex outside the circle are both tangent to the circle, the angle formed is half the difference of the measures of the arcs. Therefore, 

Letting , since the total arc measure of a circle is 360 degrees, 

We are also given that 

\displaystyle m \angle AVB = 45

Making substitutions, and solving for \displaystyle x:

\displaystyle \frac{(360- x )- x }{2} =45

\displaystyle \frac{360- 2 x }{2} =45

Multiply both sides by 2:

\displaystyle \frac{360- 2 x }{2} \cdot 2 =45 \cdot 2

\displaystyle 360- 2 x = 90

Subtract 360 from both sides:

\displaystyle 360- 2 x - 360 = 90 - 360

\displaystyle -2x = -270

Divide both sides by \displaystyle -2:

\displaystyle -2x \div (-2) = -270 \div (-2)

\displaystyle x = 135,

the measure of  and, consequently, that of \displaystyle \angle AOB

Example Question #71 : Hi Set: High School Equivalency Test: Math

Inscribed heptagon

The above figure shows a regular seven-sided polygon, or heptagon, inscribed inside a circle. \displaystyle O is the common center of the figures.

Give the measure of \displaystyle \angle DBO.

Possible Answers:

\displaystyle 63\frac{3}{7}^{\circ }

\displaystyle 62 \frac{4}{7}^{\circ }

\displaystyle 61 \frac{5}{7}^{\circ }

\displaystyle 65 \frac{1}{7}^{\circ }

\displaystyle 64 \frac{2}{7}^{\circ }

Correct answer:

\displaystyle 64 \frac{2}{7}^{\circ }

Explanation:

Consider the figure below, which adds some radii of the heptagon  (and circle):

Inscribed heptagon

\displaystyle \overline{OB}, as a radius of a regular polygon, bisects \displaystyle \angle EBD. The measure of this angle can be calculated using the formula

\displaystyle m = \frac{180 (n-2)}{n},

where \displaystyle n = 7:

\displaystyle m \angle EBD = \frac{180^{\circ } (7-2)}{7} = \frac{180^{\circ } (5)}{7} = \frac{900}{7}^{\circ } = 1 28 \frac{4}{7}^{\circ }

Consequently,

\displaystyle \angle DBO = \frac{1}{2} \cdot m \angle EBD = \frac{1}{2} \cdot 1 28 \frac{4}{7}^{\circ } = 64 \frac{2}{7}^{\circ },

the correct response.

 

Example Question #1 : Properties Of Polygons And Circles

Inscribed heptagon

The above figure shows a regular seven-sided polygon, or heptagon, inscribed inside a circle. \displaystyle O is the common center of the figures.

Give the measure of \displaystyle \angle AOB.

Possible Answers:

\displaystyle 152 \frac{6}{7}^{\circ }

\displaystyle 153 \frac{5}{7}^{\circ }

\displaystyle 156 \frac{4}{7}^{\circ }

\displaystyle 155 \frac{1}{7}^{\circ }

\displaystyle 154 \frac{2}{7}^{\circ }

Correct answer:

\displaystyle 154 \frac{2}{7}^{\circ }

Explanation:

Examine the diagram below, which divides \displaystyle \angle AOB into three congruent angles, one of which is \displaystyle \angle 1:

Inscribed heptagon

The measure of a central angle of a regular \displaystyle n-sided polygon which intercepts one side of the polygon is \displaystyle \frac{360 ^{\circ }}{n}; setting \displaystyle n = 7, the measure of \displaystyle \angle 1 is 

\displaystyle m \angle 1 = \frac{360 ^{\circ }}{7} = 51 \frac{3}{7}^{\circ }\displaystyle \angle AOC has measure three times this; that is, 

\displaystyle m \angle AOC = 3 \times51 \frac{3}{7}^{\circ } = 154 \frac{2}{7}^{\circ }

Example Question #11 : Measurement And Geometry

Inscribed heptagon

The above figure shows a regular seven-sided polygon, or heptagon, inscribed inside a circle. \displaystyle O is the common center of the figures.

Give the measure of \displaystyle \angle AOC.

Possible Answers:

\displaystyle 105 \frac{1}{7}^{\circ }

\displaystyle 101 \frac{3}{7}^{\circ }

\displaystyle 103 \frac{5}{7}^{\circ }

\displaystyle 102 \frac{6}{7}^{\circ }

\displaystyle 104 \frac{2}{7}^{\circ }

Correct answer:

\displaystyle 102 \frac{6}{7}^{\circ }

Explanation:

Examine the diagram below, which divides \displaystyle \angle AOC into two congruent angles, one of which is \displaystyle \angle 1:

Inscribed heptagon

The measure of a central angle of a regular \displaystyle n-sided polygon which intercepts one side of the polygon is \displaystyle \frac{360 ^{\circ }}{n}; setting \displaystyle n = 7, the measure of \displaystyle \angle 1 is 

\displaystyle m \angle 1 = \frac{360 ^{\circ }}{7} = 51 \frac{3}{7}^{\circ }\displaystyle \angle AOC has measure twice this; that is, 

\displaystyle m \angle AOC = 2 \times51 \frac{3}{7}^{\circ } = 102 \frac{6}{7}^{\circ }

Example Question #1 : Angle Measure, Central Angles, And Inscribed Angles

Inscribed nonagon

The above figure shows a regular ten-sided polygon, or decagon, inscribed inside a circle. \displaystyle O is the common center of the figures.

Give the measure of \displaystyle \angle AOB.

Possible Answers:

\displaystyle 84^{\circ }

\displaystyle 80^{\circ }

\displaystyle 76^{\circ }

\displaystyle 75^{\circ }

\displaystyle 72^{\circ }

Correct answer:

\displaystyle 72^{\circ }

Explanation:

Examine the diagram below, which divides \displaystyle \angle AOB into two congruent angles, one of which is \displaystyle \angle 1:

Inscribed nonagon

The measure of a central angle of a regular \displaystyle n-sided polygon which intercepts one side of the polygon is \displaystyle \frac{360 ^{\circ }}{n}; setting \displaystyle n = 10, the measure of \displaystyle \angle 1 is 

\displaystyle m \angle 1 = \frac{360 ^{\circ }}{10} =36^{\circ }\displaystyle \angle AOB has measure twice this; that is, 

\displaystyle m \angle AOB = 2 \times 36 ^{\circ } = 72 ^{\circ }.

Example Question #2 : Properties Of Polygons And Circles

Inscribed nonagon

The above figure shows a regular ten-sided polygon, or decagon, inscribed inside a circle. \displaystyle O is the common center of the figures.

Give the measure of \displaystyle \angle OBC.

Possible Answers:

\displaystyle 40^{\circ }

\displaystyle 42^{\circ }

\displaystyle 32^{\circ }

\displaystyle 36 ^{\circ }

\displaystyle 45^{\circ }

Correct answer:

\displaystyle 36 ^{\circ }

Explanation:

Consider the triangle \displaystyle \bigtriangleup OBC. Since \displaystyle \overline{OB} and \displaystyle \overline{OC} are radii, they are congruent, and by the Isosceles Triangle Theorem, \displaystyle m \angle OBC = m \angle OCB

Now, examine the figure below, which divides \displaystyle \angle BOC into three congruent angles, one of which is \displaystyle \angle 1:

Inscribed nonagon

The measure of a central angle of a regular \displaystyle n-sided polygon which intercepts one side of the polygon is \displaystyle \frac{360 ^{\circ }}{n}; setting \displaystyle n = 10, the measure of \displaystyle \angle 1 is 

\displaystyle m \angle 1 = \frac{360 ^{\circ }}{10} =36^{\circ }\displaystyle \angle BOC has measure three times this; that is, 

\displaystyle m \angle BOC = 3 \times 36 ^{\circ } = 108 ^{\circ }.

The measures of the interior angles of a triangle total \displaystyle 108^{\circ }, so

\displaystyle m \angle OCB + m \angle OBC+m \angle BOC = 180

Substituting 108 for \displaystyle \angle BOC and \displaystyle m \angle OBC for \displaystyle m \angle OCB:

\displaystyle m \angle OBC+ m \angle OBC+108 = 180

\displaystyle 2 m \angle OBC+108 = 180

\displaystyle 2 m \angle OBC+108- 108 = 180- 108

\displaystyle 2 m \angle OBC=72

\displaystyle 2 m \angle OBC \div 2 =72 \div 2

\displaystyle m \angle OBC= 36

Example Question #1 : Properties Of Polygons And Circles

Inscribed nonagon

The above figure shows a regular ten-sided polygon, or decagon, inscribed inside a circle. \displaystyle O is the common center of the figures.

Give the measure of \displaystyle \angle CBE.

Possible Answers:

\displaystyle 32^{\circ }

\displaystyle 30^{\circ }

\displaystyle 42^{\circ }

\displaystyle 40^{\circ }

\displaystyle 36^{\circ }

Correct answer:

\displaystyle 36^{\circ }

Explanation:

Through symmetry, it can be seen that Quadrilateral \displaystyle BCDE is a trapezoid, such that  \displaystyle \overline{BC} || \overline{DE }. By the Same-Side Interior Angle Theorem, \displaystyle \angle CBE and \displaystyle \angle DEB are supplementary - that is, 

\displaystyle m \angle CBE +\angle DEB = 180.

The measure of \displaystyle \angle DEB can be calculated using the formula

\displaystyle m = \frac{180 (n-2)}{n},

where \displaystyle n = 10:

\displaystyle m \angle DEB= \frac{180^{\circ } (10-2)}{10} = \frac{180^{\circ } (8)}{10} = \frac{1,440}{10}^{\circ } =144 ^{\circ }

Substituting: 

\displaystyle m \angle CBE +144= 180

\displaystyle m \angle CBE +144 - 144 = 180 - 144

\displaystyle m \angle CBE = 36

Example Question #1 : Angle Measure, Central Angles, And Inscribed Angles

If two angles are supplementary and one angle measures \displaystyle 95^{\circ}, what is the measurement of the second angle?

Possible Answers:

\displaystyle 95^{\circ}

\displaystyle 90^{\circ}

\displaystyle 80^{\circ}

\displaystyle 85^{\circ}

Correct answer:

\displaystyle 85^{\circ}

Explanation:

Step 1: Define supplementary angles. Supplementary angles are two angles whose sum is \displaystyle 180^{\circ}.

Step 2: Find the other angle by subtracting the given angle from the maximum sum of the two angles.

So, \displaystyle 180^{\circ}-95^{\circ}=85^\circ

 

The missing angle (or second angle) is \displaystyle 85^{\circ}

Example Question #71 : Hi Set: High School Equivalency Test: Math

\displaystyle \angle 1 and \displaystyle \angle 2 are complementary angles.

\displaystyle \angle 1 and \displaystyle \angle 3 are supplementary angles.

\displaystyle \angle 2 \cong \angle 4

\displaystyle m \angle 3= 112^{\circ }

Evaluate \displaystyle m \angle 4.

Possible Answers:

\displaystyle 68^{\circ }

\displaystyle 90^{\circ }

\displaystyle 22^{\circ }

\displaystyle 158^{\circ }

\displaystyle 112^{\circ }

Correct answer:

\displaystyle 22^{\circ }

Explanation:

\displaystyle \angle 1 and \displaystyle \angle 3 are supplementary angles, so, by definition,

\displaystyle m \angle 1 + m \angle 3 = 180^{\circ }

\displaystyle m \angle 3= 112^{\circ }, so substitute and solve for \displaystyle m \angle 1:

\displaystyle m \angle 1 + 112^{\circ } = 180^{\circ }

\displaystyle m \angle 1 + 112^{\circ } -112^{\circ } = 180^{\circ }-112^{\circ }

\displaystyle m \angle 1 = 68 ^{\circ }

\displaystyle \angle 1 and \displaystyle \angle 2 are complementary angles, so, by definition, 

\displaystyle m \angle 1 + m \angle 2 = 90^{\circ }

Substitute and solve for \displaystyle m \angle 2:

\displaystyle 68 ^{\circ } + m \angle 2 = 90^{\circ }

\displaystyle 68 ^{\circ } + m \angle 2 - 68 ^{\circ } = 90^{\circ }-68 ^{\circ }

\displaystyle m \angle 2 =22^{\circ }

\displaystyle \angle 2 \cong \angle 4 - that is, the angles have the same measure. Therefore,

\displaystyle m \angle 4 =22^{\circ }.

Learning Tools by Varsity Tutors