ISEE Upper Level Math : Triangles

Study concepts, example questions & explanations for ISEE Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Isosceles Triangles

Two sides of an isosceles triangle have lengths 3 feet and 4 feet. Which of the following could be the length of the third side?

Possible Answers:

\displaystyle 42 \textrm{ in}

\displaystyle 32 \textrm{ in}

\displaystyle 36 \textrm{ in}

\displaystyle 40 \textrm{ in}

\displaystyle 54 \textrm{ in}

Correct answer:

\displaystyle 36 \textrm{ in}

Explanation:

An isosceles triangle, by definition, has two sides of equal length. Having the third side measure either 3 feet or 4 feet would make the triangle meet this criterion.

3 feet is equal to \displaystyle 3 \times 12 = 36 inches, and 4 feet is equal to \displaystyle 4 \times 12 = 48 inches. We choose 36 inches, since that, but not 48 inches, is a choice.

Example Question #2 : Isosceles Triangles

The triangles are similar. Solve for \displaystyle x.

Question_12

Possible Answers:

\displaystyle x=3

\displaystyle x=4

\displaystyle x=2

\displaystyle x=1

Correct answer:

\displaystyle x=2

Explanation:

Because the triangles are similar, proportions can be used to solve for the length of the side:

\displaystyle \frac{9}{3}=\frac{6}{x}

Cross-multiply:

\displaystyle 9x=18

\displaystyle x=2

Example Question #41 : Isee Upper Level (Grades 9 12) Mathematics Achievement

One of the base angles of an isosceles triangle is \displaystyle 42^{\circ}. Give the measure of the vertex angle.

Possible Answers:

\displaystyle 86 ^{\circ}

\displaystyle 96 ^{\circ}

\displaystyle 100^{\circ}

\displaystyle 98 ^{\circ}

\displaystyle 90^{\circ}

Correct answer:

\displaystyle 96 ^{\circ}

Explanation:

The base angles of an isosceles triangle are always equal. Therefore both base angles are \displaystyle 42^{\circ}.

Let \displaystyle x= the measure of the third angle. Since the sum of the angles of a triangle is \displaystyle 180^{\circ}, we can solve accordingly:

\displaystyle 42+42+x=180\Rightarrow x=180-84\Rightarrow x=96^{\circ}

Example Question #41 : Geometry

A right triangle has a hypotenuse of 10 and a side of 6. What is the missing side?

Possible Answers:

\displaystyle 12

\displaystyle 8

\displaystyle 5

\displaystyle 4

Correct answer:

\displaystyle 8

Explanation:

To find the missing side, use the Pythagorean Theorem \displaystyle (a^2+b^2=c^2). Plug in (remember c is always the hypotenuse!) so that \displaystyle 6^2+b^2=10^2. Simplify and you get \displaystyle 36+b^2=100. Subtract 36 from both sides so that you get \displaystyle b^2=64.Take the square root of both sides. B is 8.

Example Question #3 : Triangles

Right_triangle

Refer to the above diagram. Which of the following quadratic equations would yield the value of \displaystyle x as a solution?

Possible Answers:

\displaystyle 2x^{2}+6x+409 = 0

\displaystyle x^{2}+6x+409 = 0

\displaystyle 2x^{2}+6x-11 = 0

\displaystyle x^{2}+6x-391 = 0

\displaystyle 2x^{2}+6x-391 = 0

Correct answer:

\displaystyle 2x^{2}+6x-391 = 0

Explanation:

By the Pythagorean Theorem,

\displaystyle x^{2}+ (x+3)^{2} = 20^{2}

\displaystyle x^{2}+ x^{2}+6x+9= 400

\displaystyle 2x^{2}+6x-391 = 0

Example Question #2 : Right Triangles

Right_triangle

Note: Figure NOT drawn to scale.

Refer to the above diagram. Which of the following quadratic equations would yield the value of \displaystyle x as a solution?

Possible Answers:

\displaystyle 2x^{2} -4x-24= 0

\displaystyle 2x^{2} +4x-24= 0

\displaystyle x^{2} +4x+74= 0

\displaystyle x^{2} -4x-24= 0

\displaystyle x^{2} -4x+74= 0

Correct answer:

\displaystyle x^{2} -4x-24= 0

Explanation:

By the Pythagorean Theorem,

\displaystyle x^{2}+ (x+5)^{2} = (x+7)^{2}

\displaystyle x^{2}+ x^{2} +10x+25 = x^{2} +14x +49

\displaystyle 2x^{2} +10x+25 = x^{2} +14x +49

\displaystyle x^{2} -4x-24= 0

Example Question #2 : Triangles

Right_triangle

Note: Figure NOT drawn to scale.

Refer to the above diagram.

\displaystyle AF = 6 , FD = 8

Find the length of \displaystyle \overline{BC}.

Possible Answers:

\displaystyle 16\frac{2}{3}

\displaystyle 24

\displaystyle 22\frac{2}{9}

\displaystyle 21

\displaystyle 33\frac{1}{3}

Correct answer:

\displaystyle 22\frac{2}{9}

Explanation:

First, find \displaystyle AB.

Since \displaystyle \overline{DF } is an altitude of right \displaystyle \Delta ADB to its hypotenuse, 

\displaystyle \frac{FB}{FD}= \frac{FD}{AF}

\displaystyle \frac{FB}{8}= \frac{8}{6}

\displaystyle FB= \frac{8}{6} \cdot 8 = 10 \frac{2}{3}

\displaystyle AB = AF + FB = 6 + 10 \frac{2}{3} = 16 \frac{2}{3}

\displaystyle \Delta AFD \sim \Delta ABC by the Angle-Angle Postulate, so 

\displaystyle \frac{BC}{FD} = \frac{AB}{AF}

\displaystyle \frac{BC}{8} = \frac{16 \frac{2}{3}}{6}

\displaystyle BC = 16 \frac{2}{3}\cdot 8 \div 6 = 22\frac{2}{9}

Example Question #3 : Right Triangles

Right_triangle

Note: Figure NOT drawn to scale.

Refer to the above diagram.

\displaystyle DE = 6, EC = 12

Find the length of \displaystyle \overline{AB}.

Possible Answers:

\displaystyle 7\frac{1}{4}

\displaystyle 7\frac{1}{2}

\displaystyle 7\frac{3}{4}

\displaystyle 8

\displaystyle 7

Correct answer:

\displaystyle 7\frac{1}{2}

Explanation:

First, find \displaystyle CB.

Since \displaystyle \overline{DE} is an altitude of \displaystyle \Delta CDB from its right angle to its hypotenuse, 

\displaystyle \Delta DEC \sim \Delta BED

\displaystyle \frac{BE}{DE}= \frac{ED}{EC}

\displaystyle \frac{BE}{6}= \frac{6}{12}

\displaystyle BE= \frac{6}{12} \cdot 6 = 3

\displaystyle CB =BE + EC = 3+ 12 = 15

\displaystyle \Delta DEC \sim \Delta ABC by the Angle-Angle Postulate, so 

\displaystyle \frac{AB}{DE} = \frac{CB}{CE}

\displaystyle \frac{AB}{6} = \frac{15}{12}

\displaystyle AB= \frac{15}{12} \cdot 6

\displaystyle AB = 7\frac{1}{2}

Example Question #4 : Right Triangles

Right_triangle

Note: Figure NOT drawn to scale.

Refer to the above diagram. Evaluate \displaystyle x.

Possible Answers:

\displaystyle 13

\displaystyle 15\frac{3}{8}

\displaystyle 3\frac{3}{8}

\displaystyle 30\frac{3}{4}

\displaystyle 6\frac{3}{4}

Correct answer:

\displaystyle 3\frac{3}{8}

Explanation:

By the Pythagorean Theorem,

\displaystyle x^{2}+ 15^{2} = (x+12)^{2}

\displaystyle x^{2}+ 225 = x^{2}+24x+144

\displaystyle 225 = 24x+144

\displaystyle 24x= 81

\displaystyle x= 3\frac{3}{8}

 

Example Question #5 : Right Triangles

A right triangle \displaystyle \Delta ABC with hypotenuse \displaystyle \overline{AC} is inscribed in \displaystyle \odot O, a circle with radius 26. If \displaystyle AB = 20, evaluate the length of \displaystyle \overline{BC}.

Possible Answers:

\displaystyle 48

Insufficient information is given to answer the question.

\displaystyle 24

\displaystyle 52

\displaystyle 26

Correct answer:

\displaystyle 48

Explanation:

The arcs intercepted by a right angle are both semicircles, so hypotenuse \displaystyle \overline{AC} shares its endpoints with two semicircles. This makes \displaystyle \overline{AC} a diameter of the circle, and \displaystyle AC = 2r = 2 \cdot 26 = 52.

By the Pythagorean Theorem,

\displaystyle BC = \sqrt{(AC)^{2} - (AB)^{2}} = \sqrt{52^{2} -20^{2}} = \sqrt{2,704-400} = \sqrt{2,304} = 48

 

Learning Tools by Varsity Tutors