Undefined control sequence \textup
Undefined control sequence \textup
Undefined control sequence \textup

PSAT Math : General Fractions

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Reciprocal Of A Fraction

What is the reciprocal of the following fraction: 18/27

Possible Answers:

9

27/18

-18/27

9/27

Correct answer:

27/18

Explanation:

A fraction multiplied by its reciprocal will equal 1. To find the reciprocal of a fraction, switch the denominator and numerator. The reciprocal of 18/27 is 27/18.

Example Question #1691 : Psat Mathematics

3/5 + 4/7 – 1/3 =

Possible Answers:

72/89

3/37

7/9

88/105

4/3

Correct answer:

88/105

Explanation:

We need to find a common denominator to add and subtract these fractions. Let's do the addition first. The lowest common denominator of 5 and 7 is 5 * 7 = 35, so 3/5 + 4/7 = 21/35 + 20/35 = 41/35. 

Now to the subtraction. The lowest common denominator of 35 and 3 is 35 * 3 = 105, so altogether, 3/5 + 4/7 – 1/3 = 41/35 – 1/3 = 123/105 – 35/105 = 88/105. This does not simplify and is therefore the correct answer.

Example Question #1 : General Fractions

3/5 + 4/7 – 1/3 = 

Possible Answers:

4/3

72/89

7/9

3/37

88/105

Correct answer:

88/105

Explanation:

We need to find a common denominator to add and subtract these fractions. Let's do the addition first. The lowest common denominator of 5 and 7 is 5 * 7 = 35, so 3/5 + 4/7 = 21/35 + 20/35 = 41/35. 

Now to the subtraction. The lowest common denominator of 35 and 3 is 35 * 3 = 105, so altogether, 3/5 + 4/7 – 1/3 = 41/35 – 1/3 = 123/105 – 35/105 = 88/105. This does not simplify and is therefore the correct answer.

Example Question #1 : How To Find The Lowest / Least Common Denominator

Possible Answers:

\displaystyle \frac{2}{7}

\displaystyle \frac{8}{35}

\displaystyle \frac{6}{35}

\displaystyle \frac{1}{7}

\displaystyle \frac{1}{5}

Correct answer:

\displaystyle \frac{6}{35}

Explanation:

\displaystyle \frac{35}{35}-\frac{29}{35}=\frac{6}{35}

Example Question #1 : How To Find The Lowest / Least Common Denominator

Simplify:

\displaystyle \frac{7}{15}+\frac{2}{3}+\frac{13}{20}

Possible Answers:

\displaystyle 2

\displaystyle \frac{22}{38}

\displaystyle \frac{57}{30}

\displaystyle 1

\displaystyle \frac{107}{60}

Correct answer:

\displaystyle \frac{107}{60}

Explanation:

First, find the common denominator of the fractions in order to add them together. Looking at the first two fractions, we can see that the common denominator is 15 because 3 times five is 15. We can now change both fractions to have a denominator of 15 so that we can add them together:

\displaystyle \frac{7}{15}+\frac{2\cdot 5}{3\cdot 5}+\frac{13}{20}

\displaystyle \frac{7}{15}+\frac{10}{15}+\frac{13}{20}

\displaystyle \frac{17}{15}+\frac{13}{20}

Now, find a common denominator for the remaining fractions. This can be done by listing multiples of 15 and 20 and finding the lowest common multiple:

15: 15, 30, 45, 60, 75

20: 20, 40, 60, 80

60 is the lowest common multiple, so it is our least common denominator.

\displaystyle \frac{17\cdot 4}{15\cdot 4}+\frac{13\cdot 3}{20\cdot 3}

\displaystyle \frac{68}{60}+\frac{39}{60}

\displaystyle \frac{107}{60}

Example Question #1691 : Psat Mathematics

Simplify:

\displaystyle \frac{56}{1-\frac{1}{49}}

Possible Answers:

\displaystyle 57 \frac{1}{6}

\displaystyle 55\frac{1}{49}

\displaystyle 54\frac{48}{49}

\displaystyle 55\frac{1}{7}

\displaystyle 54\frac{6}{7}

Correct answer:

\displaystyle 57 \frac{1}{6}

Explanation:

\displaystyle \frac{56}{1-\frac{1}{49}}

\displaystyle = 56 \div \left ( 1-\frac{1}{49} \right )

\displaystyle = 56 \div \left (\frac{49}{49} -\frac{1}{49} \right )

\displaystyle = \frac{56 }{1}\div \frac{48}{49}

\displaystyle = \frac{56 }{1}\cdot \frac{49}{48}

\displaystyle = \frac{7}{1}\cdot \frac{49}{6}

\displaystyle = \frac{343}{6}

\displaystyle = 57 \frac{1}{6}

Example Question #1 : How To Find A Solution To A Compound Fraction

Simplify:

\displaystyle \frac{\frac{3}{4}-\frac{2}{5}}{2- \frac{9}{10}}

Possible Answers:

\displaystyle \frac{7}{22}

\displaystyle \frac{77}{200}

\displaystyle \frac{147}{200}

\displaystyle \frac{5}{72}

\displaystyle \frac{7}{38}

Correct answer:

\displaystyle \frac{7}{22}

Explanation:

\displaystyle \frac{\frac{3}{4}-\frac{2}{5}}{2- \frac{9}{10}}

\displaystyle = \left ( \frac{3}{4}-\frac{2}{5} \right ) \div \left ( 2- \frac{9}{10} \right )

\displaystyle = \left ( \frac{15}{20}-\frac{8}{20} \right ) \div \left ( \frac{20}{10}- \frac{9}{10} \right )

\displaystyle = \frac{7}{20} \div \frac{11}{10}

\displaystyle = \frac{7}{20} \cdot \frac{10}{11}

\displaystyle = \frac{7}{2} \cdot \frac{1}{11}

\displaystyle = \frac{7}{22}

Example Question #3 : How To Find A Solution To A Compound Fraction

Simplify:

\displaystyle \frac{1-\frac{1}{4}}{1-\frac{1}{8}}

Possible Answers:

\displaystyle \frac{21}{32}

\displaystyle \frac{6}{7}

\displaystyle \frac{8}{9}

\displaystyle \frac{1}{2}

\displaystyle \frac{7}{8}

Correct answer:

\displaystyle \frac{6}{7}

Explanation:

\displaystyle \frac{1-\frac{1}{4}}{1-\frac{1}{8}}

\displaystyle = \left (1 -\frac{1}{4} \right ) \div \left (1-\frac{1}{8} \right )

\displaystyle = \left (\frac{4}{4}-\frac{1}{4} \right ) \div \left (\frac{8}{8}-\frac{1}{8} \right )

\displaystyle = \frac{3}{4} \div \frac{7}{8}

\displaystyle = \frac{3}{4} \cdot \frac{8}{7}

\displaystyle = \frac{3}{1} \cdot \frac{2}{7}

\displaystyle = \frac{6}{7}

Example Question #2 : How To Find A Solution To A Compound Fraction

Simplify:

\displaystyle \frac{2-\frac{1}{4}}{1+\frac{1}{7}}

Possible Answers:

\displaystyle 1 \frac{17}{32}

\displaystyle 2

None of the other responses gives the correct answer.

\displaystyle 1\frac{1}{28}

\displaystyle 1\frac{27}{28}

Correct answer:

\displaystyle 1 \frac{17}{32}

Explanation:

\displaystyle \frac{2-\frac{1}{4}}{1+\frac{1}{7}}

\displaystyle = \left ( 2-\frac{1}{4} \right ) \div \left ( 1+\frac{1}{7} \right )

\displaystyle = \left (\frac{8}{4}-\frac{1}{4} \right ) \div \left ( \frac{7}{7}+\frac{1}{7} \right )

\displaystyle = \frac{7}{4} \div \frac{8}{7}

\displaystyle = \frac{7}{4} \cdot \frac{7}{8}

\displaystyle = \frac{49}{32}

\displaystyle = 1 \frac{17}{32}

 

Example Question #1 : How To Find A Solution To A Compound Fraction

Simplify:

\displaystyle \frac{\frac{1}{3}+\frac{4}{5} }{\frac{2}{3}+\frac{4}{5} }

Possible Answers:

\displaystyle \frac{2}{9}

\displaystyle \frac{5}{8}

\displaystyle \frac{1}{2}

\displaystyle \frac{17} {22}

\displaystyle \frac{374}{225}

Correct answer:

\displaystyle \frac{17} {22}

Explanation:

\displaystyle \frac{\frac{1}{3}+\frac{4}{5} }{\frac{2}{3}+\frac{4}{5} }

\displaystyle =\left ( \frac{1}{3}+\frac{4}{5} \right ) \div\left ( \frac{2}{3}+\frac{4}{5} \right )

\displaystyle =\left ( \frac{5}{15}+\frac{12}{15} \right ) \div\left ( \frac{10}{15}+\frac{12}{15} \right )

\displaystyle = \frac{17}{15} \div \frac{22}{15}

\displaystyle = \frac{17}{15} \cdot \frac{15}{22}

\displaystyle = \frac{17}{1} \cdot \frac{1}{22}

\displaystyle = \frac{17} {22}

Learning Tools by Varsity Tutors