PSAT Math : How to find inverse variation

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Inverse Variation

A school's tornado shelter has enough food to last 20 children for 6 days. If 24 children ended up taking shelter together, for how many fewer days will the food last?

Possible Answers:

6

1

8

2

4

Correct answer:

1

Explanation:

Because the number of days goes down as the number of children goes up, this problem type is inverse variation. We can solve this problem by the following steps:

20*6=24*x

120=24x

x=120/24

x=5

In this equation, x represents the total number of days that can be weathered by 24 students. This is down from the 6 days that 20 students could take shelter together. So the difference is 1 day less.

Example Question #1 : How To Find Inverse Variation

\(\displaystyle A\) varies inversely as the cube of \(\displaystyle B\).

If \(\displaystyle A = 8\) when \(\displaystyle B = 66\), then evaluate \(\displaystyle A\) when \(\displaystyle B = 100\). (Nearest tenth)

Possible Answers:

\(\displaystyle 27.8\)

\(\displaystyle 5.3\)

\(\displaystyle 7.0\)

\(\displaystyle 2.3\) 

\(\displaystyle 9.2\)

Correct answer:

\(\displaystyle 2.3\) 

Explanation:

If \(\displaystyle A\) varies inversely as the cube of \(\displaystyle B\), then, if \(\displaystyle A ,B\) are the initial values of the variables and \(\displaystyle A' ,B'\) are the final values,

\(\displaystyle A'B' ^{3} = AB^{3}\)

Substitute \(\displaystyle A = 8, B = 66, B'= 100\) and find \(\displaystyle A'\):

\(\displaystyle A' \cdot 100 ^{3} = 8 \cdot 66^{3}\)

\(\displaystyle A' =\frac{ 8 \cdot 66^{3}}{100^{3}} = \frac{ 8 \cdot 287,496}{1,000,000} =2.299968\)

This rounds to 2.3.

Example Question #2 : How To Find Inverse Variation

\(\displaystyle A\) varies inversely as the cube root of \(\displaystyle B\).

If \(\displaystyle A = 8\) when \(\displaystyle B = 66\), then evaluate \(\displaystyle A\) when \(\displaystyle B = 100\). (Nearest tenth)

Possible Answers:

\(\displaystyle 27.8\)

\(\displaystyle 5.3\)

\(\displaystyle 9.2\)

\(\displaystyle 7.0\)

\(\displaystyle 2.3\) 

Correct answer:

\(\displaystyle 7.0\)

Explanation:

If \(\displaystyle A\) varies inversely as the cube root of \(\displaystyle B\), then, if \(\displaystyle A ,B\) are the initial values of the variables and \(\displaystyle A' ,B'\) are the final values,

\(\displaystyle A'\sqrt[3]{B'} = A\sqrt[3]{B}\)

Substitute \(\displaystyle A = 8, B = 66, B'= 100\) and find \(\displaystyle A'\):

\(\displaystyle A'\sqrt[3]{100} = 8\sqrt[3]{66}\)

\(\displaystyle A'=\frac{ 8\sqrt[3]{66}}{\sqrt[3]{100} } \approx \frac{ 8 \cdot 4.0412}{4.6416} \approx 7.0\)

Example Question #3 : How To Find Inverse Variation

Find the inverse of

 \(\displaystyle y=\frac{1}{2}x-4\)

Possible Answers:

\(\displaystyle y=x-4\)

\(\displaystyle y=2x+8\)

\(\displaystyle y=2x+4\)

\(\displaystyle y=2x-8\)

Correct answer:

\(\displaystyle y=2x+8\)

Explanation:

To find the inverse we first switch the x and y variables

\(\displaystyle x=\frac{1}{2}y-4\)

Now we add 4 to each side

\(\displaystyle x+4=\frac{1}{2}y\)

From here to isolate y we need to multiply each side by 2

\(\displaystyle 2(x+4)=y\)

By distributing the 2 we get our final solution:

\(\displaystyle y=2x+8\)

Example Question #1 : How To Find Inverse Variation

\(\displaystyle A\) varies inversely as the square of \(\displaystyle B\).

If \(\displaystyle A = 8\) when \(\displaystyle B = 66\), then evaluate \(\displaystyle A\) when \(\displaystyle B = 100\). (Nearest tenth)

Possible Answers:

\(\displaystyle 3.5\)

\(\displaystyle 18.4\)

\(\displaystyle 9.8\)

\(\displaystyle 6.5\)

\(\displaystyle 5.3\)

Correct answer:

\(\displaystyle 3.5\)

Explanation:

If \(\displaystyle A\) varies inversely as the square of \(\displaystyle B\), then, if \(\displaystyle A ,B\) are the initial values of the variables and \(\displaystyle A' ,B'\) are the final values,

\(\displaystyle A'B' ^{2} = AB^{2}\).

Substitute \(\displaystyle A = 8, B = 66, B'= 100\) and find \(\displaystyle A'\):

\(\displaystyle A' \cdot 100 ^{2} = 8 \cdot 66^{2}\)

\(\displaystyle A' =\frac{ 8 \cdot 66^{2}}{100^{2}} =\frac{ 8 \cdot 66^{2}}{100^{2}} = \frac{ 8 \cdot 4,356}{10,000} =3.4848\)

This rounds to 3.5.

Example Question #2 : How To Find Inverse Variation

\(\displaystyle A\) varies inversely with the square root of \(\displaystyle B\).

If \(\displaystyle A = 8\) when \(\displaystyle B = 66\), then evaluate \(\displaystyle A\) when \(\displaystyle B = 100\). (Nearest tenth)

Possible Answers:

\(\displaystyle 5.3\)

\(\displaystyle 6.5\)

\(\displaystyle 9.8\)

\(\displaystyle 3.5\)

\(\displaystyle 18.4\)

Correct answer:

\(\displaystyle 6.5\)

Explanation:

If \(\displaystyle A\) varies inversely with the square root of \(\displaystyle B\), then, if \(\displaystyle A ,B\) are the initial values of the variables and \(\displaystyle A' ,B'\) are the final values,

\(\displaystyle A'\sqrt{B'} = A\sqrt{B}\).

Substitute \(\displaystyle A = 8, B = 66, B'= 100\) and find \(\displaystyle A'\):

\(\displaystyle A'\sqrt{100} = 8\sqrt{66}\)

\(\displaystyle A'=\frac{ 8\sqrt{66}}{\sqrt{100} } \approx \frac{ 8 \cdot 8.1240}{10} \approx 6.5\)

Example Question #3 : How To Find Inverse Variation

Find the inverse of \(\displaystyle y=2x+1\).

Possible Answers:

\(\displaystyle y=2x-1\)

\(\displaystyle y=\frac{x-1}{2}\)

\(\displaystyle y=x+2\)

\(\displaystyle y=x-1\)

Correct answer:

\(\displaystyle y=\frac{x-1}{2}\)

Explanation:

To find the inverse of a function we need to first switch the \(\displaystyle x\) and \(\displaystyle y\). Therefore, \(\displaystyle y=2x+1\) becomes

\(\displaystyle x=2y+1\)

We now solve for y by subtracting 1 from each side

\(\displaystyle x-1=2y\)

From here we divide both sides by 2 which results in

\(\displaystyle y=\frac{x-1}{2}\)

Example Question #1 : How To Find Inverse Variation

Find the inverse of \(\displaystyle 9y=3x+12\).

Possible Answers:

\(\displaystyle y=4x-3\)

\(\displaystyle y=3x+4\)

\(\displaystyle y=3x-4\)

\(\displaystyle y=9x+12\)

Correct answer:

\(\displaystyle y=3x-4\)

Explanation:

To find the inverse we first switch the variables then solve for y.

\(\displaystyle 9x=3y+12\)

Then we subtract \(\displaystyle 12\) from each side

\(\displaystyle 9x-12=3y\)

Now we divide by \(\displaystyle 3\) to get our final answer. When we divide \(\displaystyle 9\) by \(\displaystyle 3\) we are left with \(\displaystyle 3\). When we divide \(\displaystyle -12\) by \(\displaystyle 3\) we are left with \(\displaystyle -4\). Thus resulting in:

\(\displaystyle y=3x-4\)

Example Question #2 : How To Find Inverse Variation

Find the inverse equation of:

\(\displaystyle 3y-2x=20\)

 

Possible Answers:

\(\displaystyle \frac{1}{2}x+10=y\)

\(\displaystyle \frac{2x-20}{3}=y\)

\(\displaystyle \frac{3x-20}{2}=y\)

\(\displaystyle \frac{2x+20}{3}=y\)

Correct answer:

\(\displaystyle \frac{3x-20}{2}=y\)

Explanation:

To solve for an inverse, we switch x and y and solve for y. Doing so yields:

\(\displaystyle \frac{3x-20}{2}=y\)

 

 

Example Question #3 : How To Find Inverse Variation

Find the inverse equation of  \(\displaystyle 5x-4y=18\).

Possible Answers:

\(\displaystyle x=y\)

\(\displaystyle x=\frac{4y+18}{5}\)

\(\displaystyle y=\frac{4x+5}{18}\)

\(\displaystyle y=\frac{x+18}{4}\)

\(\displaystyle y=\frac{4x+18}{5}\)

Correct answer:

\(\displaystyle y=\frac{4x+18}{5}\)

Explanation:

\(\displaystyle 5x-4y=18\)

1. Switch the \(\displaystyle x\) and \(\displaystyle y\) variables in the above equation.

\(\displaystyle 5y-4x=18\)

 

2. Solve for \(\displaystyle y\):

\(\displaystyle 5y-4x=18\)

\(\displaystyle 5y-4x+4x=18+4x\)

\(\displaystyle 5y=4x+18\)

\(\displaystyle \frac{5y}{5}=\frac{4x+18}{5}\)

\(\displaystyle y=\frac{4x+18}{5}\)

 

Learning Tools by Varsity Tutors