SSAT Middle Level Math : How to subtract variables

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Subtract Variables

Simplify: \displaystyle (3x+6) - (8x-4)

Possible Answers:

\displaystyle -5x+2

\displaystyle -5x+10

\displaystyle -11x+2

\displaystyle 11x+2

\displaystyle 11x+10

Correct answer:

\displaystyle -5x+10

Explanation:

\displaystyle (3x+6) - (8x-4) = (3x-8x) +[6-(-4)]= -5x +10

Example Question #2 : How To Subtract Variables

Simplify: \displaystyle (3x+6) - (9x-5)

Possible Answers:

\displaystyle -6x+11

\displaystyle -12x+11

\displaystyle -12x+1

\displaystyle -6x-11

\displaystyle -6x+1

Correct answer:

\displaystyle -6x+11

Explanation:

\displaystyle (3x+6) - (9x-5) = (3x-9x)+[6-(-5)] = -6x +11

Example Question #3 : How To Subtract Variables

Simplify:

\displaystyle 18x - 5 (x - 7)

Possible Answers:

\displaystyle 48x

\displaystyle 13x + 7

\displaystyle 13x+ 35

\displaystyle 13x - 7

\displaystyle 13x - 35

Correct answer:

\displaystyle 13x+ 35

Explanation:

\displaystyle 18x - 5 (x - 7)

\displaystyle = 18x - 5 \cdot x - (- 5) \cdot 7

\displaystyle = 18x - 5x - (- 35)

\displaystyle = (18 - 5)x + 35

\displaystyle = 13x + 35

Example Question #71 : Variables

Simplify:

\displaystyle 78 - 6 (x - 8)

Possible Answers:

\displaystyle -6x - 30

\displaystyle -6x + 86

\displaystyle -6x + 70

\displaystyle -6x + 30

\displaystyle -6x + 126

Correct answer:

\displaystyle -6x + 126

Explanation:

\displaystyle 78 - 6 (x - 8)

\displaystyle = 78 - 6 \cdot x - (- 6) \cdot 8

\displaystyle = 78 - 6x + 48

\displaystyle = - 6x + 78 + 48

\displaystyle = - 6x + 126

Example Question #4 : How To Subtract Variables

Solve for \displaystyle x:

\displaystyle 4 + x = 11

Possible Answers:

\displaystyle x=4

\displaystyle x=11

\displaystyle x=5

\displaystyle x=7

\displaystyle x=6

Correct answer:

\displaystyle x=7

Explanation:

In order to solve for \displaystyle x, move \displaystyle x to one side of the equation and everything else to the other. To do this, subtract \displaystyle 4 from both sides.

Example Question #5 : How To Subtract Variables

Simplify:

\displaystyle 5(b-3)-3(2b+4)

Possible Answers:

\displaystyle b-27

\displaystyle -b^{2}-27

\displaystyle -b-27

\displaystyle -b+27

\displaystyle b+27

Correct answer:

\displaystyle -b-27

Explanation:

The first step is to apply the distributive property. Don't forget to distribute the negative in the second parenthesis!

\displaystyle 5(b-3)-3(2b+4)

\displaystyle (5\times b)-(5\times3)+(-3\times2b)+(-3\times4)

\displaystyle 5b-15-6b-12

Next, combine the variables and the numbers. This gives us:

\displaystyle 5b-6b-15-12

\displaystyle -b-27

Example Question #72 : Variables

Which of the following phrases can be written as the algebraic expression \displaystyle \frac{1}{5} - 6x ?

Possible Answers:

One fifth less than the product of six and a number

Six less than one fifth of a number

None of the other responses is correct.

One fifth decreased by the product of six and a number

One fifth the product of negative six and a number

Correct answer:

One fifth decreased by the product of six and a number

Explanation:

\displaystyle \frac{1}{5} - 6x is one fifth decreased by \displaystyle 6x\displaystyle 6x is the product of six and a number.

Consequently, \displaystyle \frac{1}{5} - 6x is "one fifth decreased by the product of six and a number".

Example Question #73 : Variables

Which of the following phrases can be written as the algebraic expression \displaystyle \frac{x-9}{13}?

Possible Answers:

The correct answer is not among the other choices.

Thirteen divided by the difference of a number and nine.

Thirteen divided into the difference of a number and nine.

Thirteen divided into the difference of nine and a number.

Thirteen divided by the difference of nine and a number.

Correct answer:

Thirteen divided into the difference of a number and nine.

Explanation:

\displaystyle \frac{x-9}{13} is thirteen divided into \displaystyle x - 9.

\displaystyle x - 9 is the difference of a number and nine.

Therefore, 

\displaystyle \frac{x-9}{13} is "thirteen divided into the difference of a number and nine".

Example Question #1 : Apply Properties Of Operations To Expand Linear Expressions With Rational Coefficients: Ccss.Math.Content.7.Ee.A.1

Simplify:

\displaystyle 14x - 5 (x + 8)

Possible Answers:

\displaystyle 9x -40

\displaystyle 9x+ 40

\displaystyle x

\displaystyle 9x - 8

\displaystyle 9x + 8

Correct answer:

\displaystyle 9x -40

Explanation:

\displaystyle 14x - 5 (x + 8)

\displaystyle = 14x - 5 \cdot x - 5 \cdot 8

\displaystyle = 14x - 5x - 40

\displaystyle = (14- 5) x - 40

\displaystyle = 9x - 40

Example Question #1 : Apply Properties Of Operations To Expand Linear Expressions With Rational Coefficients: Ccss.Math.Content.7.Ee.A.1

Simplify:

\displaystyle 8 (x - 7) - 3(x + 2)

Possible Answers:

\displaystyle 11x - 62

\displaystyle 5x-9

\displaystyle 5 x - 50

\displaystyle 5 x - 62

\displaystyle 11x-9

Correct answer:

\displaystyle 5 x - 62

Explanation:

\displaystyle 8 (x - 7) - 3(x + 2)

\displaystyle = 8 \cdot x -8 \cdot 7 - 3 \cdot x + (-3) \cdot 2

\displaystyle = 8x -56 - 3 x -6

\displaystyle = 8x - 3 x -56 -6

\displaystyle =( 8 - 3 ) x - (56 + 6)

\displaystyle =5 x - 62

Learning Tools by Varsity Tutors