SSAT Upper Level Math : How to find the volume of a prism

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Volume Of A Prism

A given rectangular prism has a length of \displaystyle 9\:cm, a width of \displaystyle 5\:cm, and a height of \displaystyle 7\:cm. What is the volume of the prism?

Possible Answers:

\displaystyle 315\:cm^{3}

\displaystyle 315\:cm^{2}

\displaystyle 63\:cm^{2}

\displaystyle 45\:cm^{3}

\displaystyle 63\:cm^{3}

Correct answer:

\displaystyle 315\:cm^{3}

Explanation:

The volume of a given prism \displaystyle V=Bh, where \displaystyle B is the base area and \displaystyle h is the height. For a rectangular prism, the base area \displaystyle B=l \times w, or length times width. Therefore:

\displaystyle V=Bh

\displaystyle V=(l\times w)h

Substituting in our known values:

\displaystyle V=(9\:cm\times 5\:cm)7\:cm

\displaystyle V=45\:cm^{2}\times 7\:cm

\displaystyle V=315\:cm^{3}

Example Question #1 : How To Find The Volume Of A Prism

Find the volume of a circular prism with a base radius of \displaystyle 11\:cm and a height of \displaystyle 20\:cm.

Possible Answers:

\displaystyle 440\pi\:cm^{2}

\displaystyle 2420\pi\:cm^{3}

\displaystyle 2420\pi\:cm^{2}

\displaystyle 440\pi\:cm^{3}

\displaystyle 220\pi\:cm^{3}

Correct answer:

\displaystyle 2420\pi\:cm^{3}

Explanation:

The volume of a given prism \displaystyle V=Bh, where \displaystyle B is the base area and \displaystyle h is the height. For a circular prism, the base area \displaystyle B=\pi r^{2}, or pi times the square of the radius. Therefore:

\displaystyle V=(\pi r^{2})h

Substituting in our known values:

\displaystyle V=(\pi (11\:cm)^{2})(20\:cm)

\displaystyle V=(121\pi\:cm^{2})(20\:cm)

\displaystyle V=2420\pi\:cm^{3}

Example Question #1 : How To Find The Volume Of A Prism

A triangular prism has a triangle base length of \displaystyle 4\:cm, a triangle height length of \displaystyle 8\:cm, and a prism height of \displaystyle 12\:cm. What is the volume of the prism?

Possible Answers:

\displaystyle 192\:cm^{3}

\displaystyle 192\:cm^{2}

Not enough information provided

\displaystyle 384\:cm^{2}

\displaystyle 384\:cm^{3}

Correct answer:

\displaystyle 192\:cm^{3}

Explanation:

The volume of a given prism \displaystyle V=Bh, where \displaystyle B is the base area and \displaystyle h is the prism height. For a triangular prism, the base area \displaystyle B=\frac{1}{2}bh_{2}, where \displaystyle b is the base of the triangle and \displaystyle h_{2} is the height of the triangle (not of the prism).

Therefore, we can substitute the base area equation into the equation for the volume of a prism:

\displaystyle V=Bh

\displaystyle V=(\frac{1}{2}bh_{2})h

Substituting in our known values:

\displaystyle V=(\frac{1}{2}(4\:cm)(8\:cm))(12\:cm)

\displaystyle V=(16\:cm^{2})(12\:cm)

\displaystyle V=192\:cm^{3}

Example Question #1 : How To Find The Volume Of A Prism

A given rectangular prism has a length of \displaystyle 12, a width of \displaystyle 6, and a height of \displaystyle 8. What is the volume of the prism?

Possible Answers:

\displaystyle 572

\displaystyle 60

\displaystyle 574

\displaystyle 576

\displaystyle 26

Correct answer:

\displaystyle 576

Explanation:

The volume \displaystyle V of a rectangular prism is the product of its base area \displaystyle A and its height \displaystyle h\displaystyle V=Ah. Since we can determine the base area of the rectangular prism from its length and width, we can rewrite the equation and solve:

\displaystyle V=Ah

\displaystyle V=lwh

\displaystyle V=(12)(6)(8)

\displaystyle V=12 \times48

\displaystyle V=576

Example Question #2 : How To Find The Volume Of A Prism

A given rectangular prism has a length of \displaystyle 10cm, a width of \displaystyle 7cm, and a height of \displaystyle 15cm, what is its volume?

Possible Answers:

\displaystyle 85cm^{3}

\displaystyle 525cm^{3}

\displaystyle 32cm^{3}

\displaystyle 1050cm^{3}

\displaystyle 1050cm^{2}

Correct answer:

\displaystyle 1050cm^{3}

Explanation:

The volume \displaystyle V of a rectangular prism is the product of its base area \displaystyle A and its height \displaystyle h\displaystyle V=Ah. Since we can determine the base area of the rectangular prism from its length and width, we can rewrite the equation and solve:

\displaystyle V=Ah

\displaystyle V=lwh

\displaystyle V=(10)(7)(25)

\displaystyle V=1050

Example Question #2 : How To Find The Volume Of A Prism

What is the volume of the shape below? 

Screen shot 2015 07 28 at 3.39.34 pm

Possible Answers:

\displaystyle \small 6cm^3

\displaystyle \small 7cm^3

\displaystyle \small 8cm^3

\displaystyle \small 3cm^3

\displaystyle \small 5cm^3

Correct answer:

\displaystyle \small 6cm^3

Explanation:

The formula for volume of a rectangular prism is \displaystyle \small v=l\times w\times h

\displaystyle \small v=3\times1\times2

\displaystyle \small v=6cm^3

Remember, volume is always labeled as units to the third power. 

Example Question #3 : How To Find The Volume Of A Prism

What is the volume of the shape below? 

Screen shot 2015 07 28 at 3.47.24 pm

Possible Answers:

\displaystyle \small 29cm^3

\displaystyle \small 15cam^3

\displaystyle \small 36cm^3

\displaystyle \small 26m^3

\displaystyle \small 10cm^3

Correct answer:

\displaystyle \small 36cm^3

Explanation:

The formula for volume of a rectangular prism is \displaystyle \small v=l\times w\times h

\displaystyle \small v=6\times3\times2

\displaystyle \small v=36cm^3

Remember, volume is always labeled as units to the third power. 

Example Question #4 : How To Find The Volume Of A Prism

What is the volume of the shape below? 

Screen shot 2015 07 28 at 3.56.22 pm

Possible Answers:

\displaystyle \small 42cm^3

\displaystyle \small 12cm^3

\displaystyle \small 6cm^3

\displaystyle \small 14cm^3

\displaystyle \small 21cm^3

Correct answer:

\displaystyle \small 42cm^3

Explanation:

The formula for volume of a rectangular prism is \displaystyle \small v=l\times w\times h

\displaystyle \small v=2\times3\times7

\displaystyle \small v=42cm^3

Remember, volume is always labeled as units to the third power. 

Example Question #5 : How To Find The Volume Of A Prism

What is the volume of the shape below? 

Screen shot 2015 07 28 at 3.53.08 pm

Possible Answers:

\displaystyle \small 186cm^3

\displaystyle \small 192cm^3

\displaystyle \small 52cm^3

\displaystyle \small 32cm^3

\displaystyle \small 48cm^2

Correct answer:

\displaystyle \small 192cm^3

Explanation:

The formula for volume of a rectangular prism is \displaystyle \small v=l\times w\times h

\displaystyle \small v=8\times4\times6

\displaystyle \small v=192cm^3

Remember, volume is always labeled as units to the third power. 

Example Question #3 : Apply The Volume Formula: Ccss.Math.Content.5.Md.C.5b

What is the volume of the shape below? 

Screen shot 2015 07 28 at 3.50.28 pm

Possible Answers:

\displaystyle \small 36cm^3

\displaystyle \small 180cm^3

\displaystyle \small 18cm^3

\displaystyle \small 110cm^3

\displaystyle \small 108cm^3

Correct answer:

\displaystyle \small 108cm^3

Explanation:

The formula for volume of a rectangular prism is \displaystyle \small v=l\times w\times h

\displaystyle \small v=6\times3\times6

\displaystyle \small v=108cm^3

Remember, volume is always labeled as units to the third power. 

Learning Tools by Varsity Tutors