Algebra II : Basic Operations with Complex Numbers

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4681 : Algebra Ii

What is the absolute value of \displaystyle 4-3i

Possible Answers:

\displaystyle \frac{3}{4}

\displaystyle 5

\displaystyle -4

\displaystyle \frac{-4}{3}

\displaystyle 3

Correct answer:

\displaystyle 5

Explanation:

The absolute value is a measure of the distance of a point from the origin.  Using the pythagorean distance formula to calculate this distance.

Example Question #1 : Basic Operations With Complex Numbers

Consider the following definitions of imaginary numbers:

\displaystyle x = 4 - 2i

\displaystyle y = 6 +7i

\displaystyle z = 5i

Then, \displaystyle x+y-2z = ?

Possible Answers:

\displaystyle 10-i

\displaystyle 10

\displaystyle 2(5+i)

\displaystyle -5i

\displaystyle 5(2-i)

Correct answer:

\displaystyle 5(2-i)

Explanation:

\displaystyle x + y-2z = (4-2i) + (6+7i) -2(5i) = 10 - 5i = 5(2-i)

Example Question #4 : Imaginary Numbers

Simplify the expression.

\displaystyle 4i^2-6i-7i^2+3i+4

Possible Answers:

\displaystyle -10

\displaystyle -7-3i

\displaystyle 7-3i

None of the other answer choices are correct.

\displaystyle -3i^2-3i+4

Correct answer:

\displaystyle 7-3i

Explanation:

Combine like terms. Treat \displaystyle \small i as if it were any other variable.

\displaystyle 4i^2-6i-7i^2+3i+4

\displaystyle -3i^2-3i+4

Substitute to eliminate \displaystyle \small i^2.

\displaystyle i^2=-1

\displaystyle -3(-1)-3i+4

Simplify.

\displaystyle 3-3i+4=7-3i

Example Question #4684 : Algebra Ii

What is the value of \displaystyle (3 + i)(4 + i)?

Possible Answers:

\displaystyle 4

\displaystyle 12 + 8i

\displaystyle 11 + 7i

\displaystyle 18

\displaystyle 12 + 6i

Correct answer:

\displaystyle 11 + 7i

Explanation:

When dealing with imaginary numbers, we multiply by foiling as we do with binomials. When we do this we get the expression below: 

\displaystyle (3+i)(4+i)= 12 + 3i + 4i + i^2

Since we know that \displaystyle i^2 = -1 we get \displaystyle 12 + 7i - 1 which gives us \displaystyle 11 + 7i

Example Question #2 : Complex Numbers

What is the value of \displaystyle i^4 ? 

Possible Answers:

\displaystyle 3i

\displaystyle i

\displaystyle 1

\displaystyle -i

\displaystyle i + 1

Correct answer:

\displaystyle 1

Explanation:

Recall that the definition of imaginary numbers gives that \displaystyle i = \sqrt{-1} and thus that \displaystyle i^2 = -1. Therefore, we can use Exponent Rules to write \displaystyle i^4 = i^2 \cdot i^2 = -1\cdot-1 = 1

Example Question #3 : Basic Operations With Complex Numbers

\displaystyle \frac{1-7i}{6-2i}=a-i

Find \displaystyle a.

Possible Answers:

\displaystyle 3

\displaystyle -4

\displaystyle 4

\displaystyle 0.5

\displaystyle 2.5

Correct answer:

\displaystyle 0.5

Explanation:

Multiply the numerator and denominator by the numerator's complex conjugate.

\displaystyle \frac{1-7i}{6-2i}\ast \frac{6+2i}{6+2i}=\frac{20-40i}{40}

Reduce/simplify.

Example Question #1 : How To Add Integers

Subtract:

\displaystyle (-1+5i)-(2-3i) 

 

Possible Answers:

\displaystyle -3+8i

\displaystyle -3+2i

\displaystyle 3-8i

\displaystyle -3-8i

\displaystyle -3-2i

Correct answer:

\displaystyle -3+8i

Explanation:

This is essentially the following expression after translation:

\displaystyle (-1+5i)-(2-3i)=-1-2+5i+3i

Now add the real parts together for a sum of \displaystyle -3, and add the imaginary parts for a sum of \displaystyle 8i.

Example Question #3 : Basic Operations With Complex Numbers

Multiply:

\displaystyle (2+3i)(1-i)

Answer must be in standard form.

Possible Answers:

\displaystyle 2-3i

\displaystyle 5-i

\displaystyle 5+i

\displaystyle 2+2i

\displaystyle 5

Correct answer:

\displaystyle 5+i

Explanation:

\displaystyle (2+3i)(1-i)

 The first step is to distribute which gives us:

\displaystyle 2-2i+3i-3i^{2}  

\displaystyle 2+i-3i^{2}=2+i+3=5+i

which is in standard form.

Example Question #4681 : Algebra Ii

Add:

\displaystyle (2-3i)+(-1-2i)

Possible Answers:

\displaystyle 5-3i

\displaystyle 1+5i

\displaystyle 5+3i

\displaystyle 1-5i

\displaystyle -1+5i

Correct answer:

\displaystyle 1-5i

Explanation:

When adding complex numbers, add the real parts and the imaginary parts separately to get another complex number in standard form.

Adding the real parts gives \displaystyle 2-1=1, and adding the imaginary parts gives \displaystyle -5i.

 

Example Question #4686 : Algebra Ii

Divide: \displaystyle \frac{2-i}{3+2i}

The answer must be in standard form.

Possible Answers:

\displaystyle \frac{2}{3}i

\displaystyle i

\displaystyle \frac{1}{5i}

\displaystyle \frac{2}{3}-\frac{1}{2}i

\displaystyle \frac{4}{13}-\frac{7i}{13}

Correct answer:

\displaystyle \frac{4}{13}-\frac{7i}{13}

Explanation:

Multiply both the numerator and the denominator by the conjugate of the denominator which is \displaystyle 3-2i which results in

\displaystyle \frac{\left ( 2-i \right )\left ( 3-2i \right )}{\left ( 3+2i \right )\left ( 3-2i \right )}

The numerator after simplification give us \displaystyle 6-4i-3i+2i^{2}=6-7i+2i^{2}=4-7i

The denominator is equal to \displaystyle 3^{2}-4i^{2}=9+4=13

Hence, the final answer in standard form =

\displaystyle \frac{4}{13}-\frac{7i}{13}

Learning Tools by Varsity Tutors