Algebra II : Multiplying and Dividing Fractions

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Multiplying And Dividing Fractions

Solve the following equation to find \displaystyle x

\displaystyle \frac{2}{3}x=\frac{4}{15}+\frac{3}{15}

Possible Answers:

\displaystyle x=\frac{30}{21}

\displaystyle x=-\frac{7}{10}

\displaystyle x=\frac{7}{10}

\displaystyle x=\frac{14}{45}

Correct answer:

\displaystyle x=\frac{7}{10}

Explanation:

The first step in solving this equation is to add the fractions, giving us: 

\displaystyle \frac{2}{3}x=\frac{7}{15}

To solve for \displaystyle x, we need to divide both sides by \displaystyle \frac{2}{3}.

Remember: When we divide a number by a fraction, we "switch" (find the reciprocal) of the fraction and mulitply it to the number.

\displaystyle \bigg(\frac{3}{2}\bigg)\bigg(\frac{2}{3}\bigg)x=\bigg(\frac{7}{15}\bigg) \bigg(\frac{3}{2}\bigg)

The right side of the equation cancels out leaving \displaystyle x alone: 

\displaystyle x=\frac{7\times 3}{15\times 2}=\frac{21}{30}

Notice: Both the numerator and denominator are divisble by \displaystyle 3 so we can simplify this further.

\displaystyle x=\frac{7}{10}

Example Question #1 : Multiplying And Dividing Fractions

Simplify \displaystyle \frac{3}{6}\cdot\frac{12}{4}.

Possible Answers:

\displaystyle \frac{36}{24}

\displaystyle \frac{3}{2}

\displaystyle \frac{2}{3}

\displaystyle \frac{6}{4}

\displaystyle \text{None of the answers listed.}

Correct answer:

\displaystyle \frac{3}{2}

Explanation:

The problem can be made easier by first simplifying each fraction: \displaystyle \frac{3}{6}=\frac{1}{2} and \displaystyle \frac{12}{4}=\frac{3}{1}

This brings our new problem to \displaystyle \frac{1}{2}\cdot\frac{3}{1}.

Now, the numerators are multiplied by each other then the denomenators are multiplied by each other: \displaystyle \frac{1\cdot3}{2\cdot1}=\frac{3}{2}.

Example Question #2 : Multiplying And Dividing Fractions

Simplify \displaystyle \frac{5}{3}\div\frac{7}{6}.

Possible Answers:

\displaystyle \frac{21}{3}

\displaystyle \frac{3}{10}

\displaystyle \frac{30}{21}

\displaystyle \frac{10}{7}

\displaystyle \frac{35}{18}

Correct answer:

\displaystyle \frac{10}{7}

Explanation:

To solve, we must turn the division problem into a multiplication problem by "flipping" the second fraction (dividing by a fraction is the same as multiplying by its reciprocal):

 \displaystyle \frac{5}{3}\div\frac{7}{6}=\frac{5}{3}\cdot\frac{6}{7}.

Then, we multiply the numerators followed by the denomenators:

 \displaystyle \frac{5\cdot6}{3\cdot7}=\frac{30}{21}.

Lastly, the fraction must be simplified by a factor of 3: 

\displaystyle \frac{30}{21}=\frac{10}{7}, which gives us our final answer. 

Example Question #1 : Multiplying And Dividing Fractions

Multiply:

\displaystyle \left(\frac{x^2}{z}\right)\cdot \left(\frac{x^2z^2}{y}\right)

Possible Answers:

\displaystyle x^4yz

\displaystyle \frac{x^4}{zy}

\displaystyle \frac{x^4z}{y}

\displaystyle x^4z^2y

Correct answer:

\displaystyle \frac{x^4z}{y}

Explanation:

To multiply fractions, just multiply the numerators, then the denominators, and then simplify.

\displaystyle (\frac{x^2}{z})(\frac{x^2z^2}{y})=\frac{x^4z^2}{zy}=\frac{x^4z}{y}

Example Question #2 : Multiplying And Dividing Fractions

Multiply:

\displaystyle \left(\frac{ab^2c}{a^{\frac{1}{2}}b^4c^3}\right)\cdot \left(\frac{abc^2}{c}\right)

Possible Answers:

\displaystyle a^{\frac{3}{2}}bc

\displaystyle \frac{a^{\frac{3}{2}}b}{c}

\displaystyle \frac{bc}{a^{\frac{3}{2}}}

\displaystyle \frac{a^\frac{3}{2}}{bc}

Correct answer:

\displaystyle \frac{a^\frac{3}{2}}{bc}

Explanation:

To multiply fractions, multiply the numerators and denominators together, then simplify.

\displaystyle (\frac{ab^2c}{a^{\frac{1}{2}}b^4c^3})(\frac{abc^2}{c})=\frac{a^2b^3c^3}{a^{\frac{1}{2}}b^4c^4}=\frac{a^{\frac{3}{2}}}{bc}

Example Question #3 : Multiplying And Dividing Fractions

Multiply:

\displaystyle \left(\frac{4}{5}x\right)\cdot \left(\frac{6}{13}y\right)

Possible Answers:

\displaystyle \frac{15}{8}xy

\displaystyle \frac{24}{65}xy

\displaystyle \frac{8x}{15y}

\displaystyle \frac{8}{15xy}

Correct answer:

\displaystyle \frac{24}{65}xy

Explanation:

Multiply the numerators and denominators. Then, simplify.

\displaystyle (\frac{4}{5}x)(\frac{6}{13}y)=(\frac{4x}{5})(\frac{6y}{13})=\frac{24xy}{65}

Example Question #4 : Multiplying And Dividing Fractions

Multiply:

\displaystyle \left(\frac{15}{7x}\right)\cdot \left(\frac{12x^2}{5}\right)

Possible Answers:

\displaystyle \frac{36}{7}x

\displaystyle \frac{7}{36}x

\displaystyle \frac{36}{7x}

\displaystyle \frac{36x^2}{7}

Correct answer:

\displaystyle \frac{36}{7}x

Explanation:

Multiply the numerators and denominators, then simplify.

\displaystyle (\frac{15}{7x})(\frac{12x^2}{5})=\frac{180x^2}{35x}=\frac{36}{7}x

Example Question #5 : Multiplying And Dividing Fractions

Simplify:

\displaystyle \frac{36x^2y}{5x^5 y^{-2}}\div\frac{9x^{-3}}{25}

Possible Answers:

\displaystyle \frac{20}{y^3}

\displaystyle 20xy^3

\displaystyle \frac{y^3}{20x^4}

\displaystyle 20y^3

Correct answer:

\displaystyle 20y^3

Explanation:

In order to divide fractions, you need to multiply the first fraction by the reciprocal of the second one.

\displaystyle \frac{36x^2y}{5x^5y^{-2}}\div\frac{9x^{-3}}{25}=\frac{36x^2y}{5x^5y^{-2}}\times\frac{25}{9x^{-3}}

Now, multiply the numerators and denominators together, then simplify.

\displaystyle \frac{36x^2y}{5x^5y^{-2}}\times\frac{25}{9x^{-3}}=\frac{900x^2y}{45x^2y^{-2}}=20y^3

Example Question #4 : Solving Rational And Fractional Functions

Simplify:

\displaystyle \frac{25st^2}{6s^3t^5}\div\frac{30s^{-9}}{45s^2t^7}

Possible Answers:

\displaystyle \frac{4s^9t^4}{25}

\displaystyle \frac{25s^9t^4}{4}

\displaystyle \frac{4}{25s^2t}

\displaystyle \frac{25}{4s^9t^4}

Correct answer:

\displaystyle \frac{25s^9t^4}{4}

Explanation:

To divid fractions, you need to multiply the first fraction by the reciprocal of the second.

\displaystyle (\frac{25st^2}{6s^3t^5})\div(\frac{30s^{-9}}{45s^2t^7})=(\frac{25st^2}{6s^3t^5})\times(\frac{45s^2t^7}{30s^{-9}})

Now, multiply the numerators and denominators together, then simplify.

\displaystyle (\frac{25st^2}{6s^3t^5})\times(\frac{45s^2t^7}{30s^{-9}})=\frac{1125s^3t^9}{180s^{-6}t^5}=\frac{25s^9t^4}{4}

Example Question #5 : Solving Rational And Fractional Functions

Simplify:

\displaystyle \frac{12m^2n}{16m^3n^4}\div\frac{8m^{-4}n}{18m^4n^2}

Possible Answers:

\displaystyle \frac{27m^7}{16n^2}

\displaystyle \frac{16n^2}{27m^7}

\displaystyle \frac{27n^2}{16m^7}

\displaystyle 27m^7n^2

Correct answer:

\displaystyle \frac{27m^7}{16n^2}

Explanation:

To divide fractions, you need to multiply the first fraction by the reciprocal of the second.

\displaystyle (\frac{12m^2n}{16m^3n^4})\div(\frac{8m^{-4}n}{18m^4n^2})=(\frac{12m^2n}{16m^3n^4})\times(\frac{18m^4n^2}{8m^{-4}n})

Now, multiply the numerators and denominators, then simplify.

\displaystyle (\frac{12m^2n}{16m^3n^4})\times(\frac{18m^4n^2}{8m^{-4}n})=\frac{216m^6n^3}{128m^{-1}n^5}=\frac{27m^7}{16n^2}

Learning Tools by Varsity Tutors