High School Physics : Understanding Universal Gravitation

Study concepts, example questions & explanations for High School Physics

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Universal Gravitation

Two satellites in space, each with a mass of \displaystyle 2000kg, are \displaystyle 1500m apart from each other. What is the force of gravity between them?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 2.66*10^{-11}N

\displaystyle 6.22*10^{-8}N

\displaystyle 3.12*10^{-1}N

\displaystyle 8.87*10^{-10}N

\displaystyle 1.19*10^{-10}N

Correct answer:

\displaystyle 1.19*10^{-10}N

Explanation:

To solve this problem, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the satellite masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=(6.67*10^{-11}\frac{m^3}{kg\cdot s^2})(\frac{(2000kg) (2000kg)}{(1500m)^2})

\displaystyle F_G=(6.67*10^{-11}\frac{m^3}{kg\cdot s^2})(\frac{4000000kg^2}{2250000m^2})

\displaystyle F_G=1.19*10^{-10}N

Example Question #2 : Universal Gravitation

Two satellites in space, each with a mass of \displaystyle 1723kg, are \displaystyle 890m apart from each other. What is the force of gravity between them?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 2.2*10^{8}N

\displaystyle 1.25*10^{-19}N

\displaystyle 2.5*10^{-20}N

\displaystyle 2.5*10^{-10}N

\displaystyle 1.1*10^{3}N

Correct answer:

\displaystyle 2.5*10^{-10}N

Explanation:

To solve this problem, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the satellite masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=(6.67*10^{-11}\frac{m^3}{kg\cdot s^2})(\frac{(1723kg )(1723kg)}{(890m)^2})

\displaystyle F_G=(6.67*10^{-11}\frac{m^3}{kg\cdot s^2})(\frac{2968729kg^2}{792100m^2})

\displaystyle F_G=2.5*10^{-10}N

Example Question #2 : Universal Gravitation

Two asteroids in space are in close proximity to each other. Each has a mass of \displaystyle 6.69*10^{15}kg. If they are \displaystyle 100,000m apart, what is the gravitational force between them?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 5.98*10^{12}N

\displaystyle 1.49*10^{-32}N

\displaystyle 1.11*10^{30}N

\displaystyle 3.01*10^{-8}N

\displaystyle 2.99*10^{11}N

Correct answer:

\displaystyle 2.99*10^{11}N

Explanation:

To solve this problem, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the asteroid masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=(6.67*10^{-11}\frac{m^3}{kg\cdot s^2})(\frac{(6.69*10^{15}kg )(6.69*10^{15}kg )}{(100,000m)^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}(\frac{4.48*10^{31}kg^2}{10*10^9m^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}(4.48*10^{21}\frac{kg^2}{m^2})

\displaystyle F_G=2.99*10^{11}N

Example Question #3 : Universal Gravitation

Two asteroids in space are in close proximity to each other. Each has a mass of \displaystyle 6.69*10^{15}kg. If they are \displaystyle 100,000m apart, what is the gravitational acceleration that they experience?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 5.12*10^{4}\frac{m}{s^2}

\displaystyle 3.89*10^{10}\frac{m}{s^2}

\displaystyle 4.47*10^{-5}\frac{m}{s^2}

\displaystyle 6.69*10^{15}\frac{m}{s^2}

\displaystyle 2.99*10^{11}\frac{m}{s^2}

Correct answer:

\displaystyle 4.47*10^{-5}\frac{m}{s^2}

Explanation:

Given that \displaystyle F=ma, we already know the mass, but we need to find the force in order to solve for the acceleration.

To solve this problem, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the satellite masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}(\frac{(6.69*10^{15}kg)(6.69*10^{15}kg)}{(100,000m)^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (\frac{4.48*10^{31}kg^2}{10*10^9m^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}(4.48*10^{21}\frac{kg^2}{m^2})

\displaystyle F_G=2.99*10^{11}N

Now we have values for both the mass and the force, allowing us to solve for the acceleration.

\displaystyle F=ma

\displaystyle 2.99*10^{11}N=(6.69*10^{15}kg)a

\displaystyle \frac{2.99*10^{11}N}{6.69*10^{15}kg}{}=a

\displaystyle 4.47*10^{-5}\frac{m}{s^2}=a

Example Question #1 : Understanding Universal Gravitation

Two asteroids, one with a mass of \displaystyle 7.12*10^{18}kg and the other with mass \displaystyle 5.33*10^8kg, are \displaystyle 10*10^{10}m apart. What is the gravitational force on the LARGER asteroid?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 3.79*10^5N

\displaystyle 2.53*10^{-5}N

\displaystyle 3.55*10^{-6}N

\displaystyle 4.61*10^{-10}N

\displaystyle 4.74*10^{-6}N

Correct answer:

\displaystyle 2.53*10^{-5}N

Explanation:

To solve this problem, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the asteroid masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}( \frac{(7.12*10^{18}kg)(5.33*10^{8}kg)}{(10*10^{10}m)^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (\frac{3.79*10^{27}kg}{10*10^{21}m^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (3.79*10^5\frac{kg^2}{m^2})

\displaystyle F_G=2.53*10^{-5}N

It actually doesn't matter which asteroid we're looking at; the gravitational force will be the same. This makes sense because Newton's 3rd law states that the force one asteroid exerts on the other is equal in magnitude, but opposite in direction, to the force the other asteroid exerts on it.

 

Example Question #2 : Universal Gravitation

Two asteroids, one with a mass of \displaystyle 7.12*10^{18}kg and the other with mass \displaystyle 5.33*10^8kg are \displaystyle 10*10^{10}m apart. What is the gravitational force on the SMALLER asteroid?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 3.55*10^{-24}N

\displaystyle 1.11*10^{12}N

\displaystyle 3.79*10^5N

\displaystyle 2.53*10^{-5}N

\displaystyle 4.74*10^{-14}N

Correct answer:

\displaystyle 2.53*10^{-5}N

Explanation:

To solve this problem, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the asteroid masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}( \frac{(7.12*10^{18}kg)(5.33*10^{8}kg)}{(10*10^{10}m)^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (\frac{3.79*10^{27}kg}{10*10^{21}m^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (3.79*10^5\frac{kg^2}{m^2})

\displaystyle F_G=2.53*10^{-5}N

It actually doesn't matter which asteroid we're looking at; the gravitational force will be the same. This makes sense because Newton's 3rd law states that the force one asteroid exerts on the other is equal in magnitude, but opposite in direction, to the force the other asteroid exerts on it.

Example Question #1 : Understanding Universal Gravitation

Two asteroids, one with a mass of \displaystyle 7.12*10^{18}kg and the other with mass \displaystyle 5.33*10^8kg are \displaystyle 10*10^{10}m apart. What is the acceleration of the SMALLER asteroid?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 9.41*10^{-7}\frac{m}{s^2}

\displaystyle 6.11*10^{-24}\frac{m}{s^2}

\displaystyle 4.74*10^{-14}\frac{m}{s^2}

\displaystyle 2.53*10^{-5}\frac{m}{s^2}

\displaystyle 3.79*10^5\frac{m}{s^2}

Correct answer:

\displaystyle 4.74*10^{-14}\frac{m}{s^2}

Explanation:

Given that Newton's second law is \displaystyle F=ma, we can find the acceleration by first determining the force.

To find the gravitational force, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the asteroid masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}( \frac{(7.12*10^{18}kg)(5.33*10^{8}kg)}{(10*10^{10}m)^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (\frac{3.79*10^{27}kg}{10*10^{21}m^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (3.79*10^5\frac{kg^2}{m^2})

\displaystyle F_G=2.53*10^{-5}N

We now have values for both the mass and the force. Using the original equation, we can now solve for the acceleration.

\displaystyle F=ma

\displaystyle 2.53*10^{-5}N=(5.33*10^8kg)a

\displaystyle \frac{2.53*10^{-5}N}{5.33*10^8kg}{}=a

\displaystyle 4.74*10^{-14}\frac{m}{s^2}=a

Example Question #41 : Forces

Two asteroids, one with a mass of \displaystyle 7.12*10^{18}kg and the other with mass \displaystyle 5.33*10^8kg are \displaystyle 10*10^{10}m apart. What is the acceleration of the LARGER asteroid?

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}

Possible Answers:

\displaystyle 3.55*10^{-24}\frac{m}{s}

\displaystyle 3.92*10^{-42}\frac{m}{s^2}

\displaystyle 1.63*10^{-12}\frac{m}{s^2}

\displaystyle 7.12*10^{-18}\frac{m}{s}

\displaystyle 4.99*10^{-7}\frac{m}{s^2}

Correct answer:

\displaystyle 3.55*10^{-24}\frac{m}{s}

Explanation:

Given that Newton's second law is \displaystyle F=ma, we can find the acceleration by first determining the force.

To find the gravitational force, use Newton's law of universal gravitation:

\displaystyle F_G=G\frac{m_1m_2}{r^2}

We are given the constant, as well as the asteroid masses and distance (radius). Using these values we can solve for the force.

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2}( \frac{(7.12*10^{18}kg)(5.33*10^{8}kg)}{(10*10^{10}m)^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (\frac{3.79*10^{27}kg}{10*10^{21}m^2})

\displaystyle F_G=6.67*10^{-11}\frac{m^3}{kg\cdot s^2} (3.79*10^5\frac{kg^2}{m^2})

\displaystyle F_G=2.53*10^{-5}N

We now have values for both the mass and the force. Using the original equation, we can now solve for the acceleration.

\displaystyle F=ma

\displaystyle 2.53*10^{-5}N=(7.12*10^{18}kg)a

\displaystyle \frac{2.53*10^{-5}N}{7.12*10^{18}kg}{}=a

\displaystyle 3.55*10^{-24}\frac{m}{s^2}=a

Example Question #12 : Universal Gravitation

Two satellites are a distance \displaystyle r from each other in space. If one of the satellites has a mass of \displaystyle m and the other has a mass of \displaystyle 2m, which one will have the smaller acceleration?

Possible Answers:

We need to know the value of the masses to solve

They will both have the same acceleration

\displaystyle 2m

\displaystyle m

Neither will have an acceleration

Correct answer:

\displaystyle 2m

Explanation:

The formula for force and acceleration is Newton's 2nd law: \displaystyle F=ma. We know the mass, but first we need to find the force:

For this equation, use the law of universal gravitation:

\displaystyle F=G\frac{m_1m_2}{r^2}

We know from the first equation that a force is a mass times an acceleration. That means we can rearrange the equation for universal gravitation to look a bit more like that first equation:

\displaystyle F=G\frac{m_1m_2}{r^2} can turn into: \displaystyle F=m_2*\frac{G*m_1}{r^2} and \displaystyle F=m_1*\frac{G*m_2}{r^2}, respectively.

We know that the forces will be equal, so set these two equations equal to each other:

\displaystyle m_1*\frac{G*m_2}{r^2}=m_2*\frac{G*m_1}{r^2}

The problem tells us that \displaystyle m_2=2m_1

\displaystyle m_1*\frac{G*2m_1}{r^2}=2m_1*\frac{G*m_1}{r^2}

Let's say that \displaystyle \frac{G*m_1}{r^2}=a to simplify. 

\displaystyle m_1*2a=2m_1*a

As you can see, the acceleration for \displaystyle m_1 is twice the acceleration for \displaystyle m_2. Therefore the mass \displaystyle 2m will have the smaller acceleration.

Example Question #51 : Forces

An asteroid with a mass of \displaystyle 10*10^{15}kg approaches the Earth. If they are \displaystyle 250,000,000m apart, what is the gravitational force exerted by the asteroid on the Earth?

\displaystyle \small M_{Earth}=5.972*10^{24}kg

\displaystyle \small G=6.67*10^{-11}\frac{m^3}{kg*s^2}

Possible Answers:

\displaystyle 6.7*10^{30}N

\displaystyle 6.37*10^{13}N

\displaystyle 1.27*10^{14}N

\displaystyle 1.59*10^{22}N

\displaystyle 0N

Correct answer:

\displaystyle 6.37*10^{13}N

Explanation:

For this question, use the law of universal gravitation:

\displaystyle F=G\frac{m_1m_2}{r^2}

We are given the value of each mass, the distance (radius), and the gravitational constant. Using these values, we can solve for the force of gravity.

\displaystyle F=(6.67*10^{-11}\frac{m^3}{kg*s^2})*\frac{(10*10^{15}kg)*(5.972*10^{24}kg)}{(250,000,000m)^2}

\displaystyle F=(6.67*10^{-11}\frac{m^3}{kg*s^2})*\frac{5.972*10^{40}kg^2}{6.25*10^{16}m^2}

\displaystyle F=(6.67*10^{-11}\frac{m^3}{kg*s^2})*(9.5552*10^{23}\frac{kg^2}{m^2})

\displaystyle F=6.37*10^{13}N

This force will apply to both objects in question. As it turns out, it does not matter which mass we're looking at; the force of gravity on each mass will be the same. This is supported by Newton's third law.

Learning Tools by Varsity Tutors