Intermediate Geometry : How to find the area of a pentagon

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Area Of A Pentagon

Pentagon_series_vt_custom_

Find the area of the pentagon shown above. 

Possible Answers:

\displaystyle 380 square units

\displaystyle 340 square units

\displaystyle 300 square units

\displaystyle 320 square units

\displaystyle 390 square units

Correct answer:

\displaystyle 380 square units

Explanation:

To find the area of this pentagon, divide the interior of the pentagon into a four-sided rectangle and two right triangles. The area of the bottom rectangle can be found using the formula:

 \displaystyle A=width\times length

\displaystyle A=20\times15=300

The area of the two right triangles can be found using the formula: 

\displaystyle A=\frac{base\times height}{2}

\displaystyle A=\frac{10\times 8}{2}=\frac{80}{2}=40

Since there are two right triangles, the sum of both will equal the area of the entire triangular top portion of the pentagon.

Thus, the solution is:

\displaystyle A=300+40+40=380

Example Question #1 : How To Find The Area Of A Pentagon

Pentagon_series_vt_custom_

Find the area of the pentagon shown above. 

Possible Answers:

\displaystyle 572 square units

\displaystyle 672 square units

\displaystyle 416 square units

\displaystyle 502 square units

Correct answer:

\displaystyle 572 square units

Explanation:

To find the area of this pentagon, divide the interior of the pentagon into a four-sided rectangle and two right triangles. The area of the bottom rectangle can be found using the formula:

 \displaystyle A=width\times length

\displaystyle A=26\times16=416

The area of the two right triangles can be found using the formula: 

\displaystyle A=\frac{base\times height}{2}

\displaystyle A=\frac{13\times 12}{2}=\frac{156}{2}=78

Since there are two right triangles, the sum of both will equal the area of the entire triangular top portion of the pentagon.

Thus, the solution is:

\displaystyle A=416+78+78=572

Example Question #782 : Intermediate Geometry

A regular pentagon has a side length of \displaystyle 9 inches and an apothem length of \displaystyle 6.2 inches. Find the area of the pentagon. 

Possible Answers:

\displaystyle 118 \displaystyle inches^2

\displaystyle 99 \displaystyle inches^2

\displaystyle 139.5 \displaystyle inches^2

\displaystyle 36 \displaystyle inches^2

Correct answer:

\displaystyle 139.5 \displaystyle inches^2

Explanation:

By definition a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. Since we are told that this pentagon has a side length of \displaystyle 9 inches, all of the sides must have a length of \displaystyle 9 inches. Additionally, the question provides the length of the apothem of the pentagon--which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 9 and a height of \displaystyle 6.2

The area of this pentagon can be found by applying the area of a triangle formula:

\displaystyle A=\frac{base\times height}{2}

\displaystyle A=\frac{9\times 6.2}{2}=\frac{55.8}{2}=27.9 

Note: the area shown above is only the a measurement from one of the five total interior triangles. Thus, to find the total area of the pentagon multiply:

\displaystyle 27.9\times5=139.5 

Example Question #783 : Intermediate Geometry

A regular pentagon has a side length of \displaystyle 14 and an apothem length of \displaystyle 9.6. Find the area of the pentagon.

Possible Answers:

\displaystyle 84 square units

\displaystyle 82 square units

\displaystyle 200 square units

\displaystyle 336 square units 

\displaystyle 67.2 square units

Correct answer:

\displaystyle 336 square units 

Explanation:

By definition a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles.

This question provides the length of the apothem of the pentagon--which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 14 and a height of \displaystyle 9.6

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}


\displaystyle A=\frac{14\times 9.6}{2}=\frac{134.4}{2}=67.2

Note: \displaystyle 67.2 is only the measurement for one of the five interior triangles. Thus, the final solution is: 

\displaystyle 67.2\times5=336

Example Question #784 : Intermediate Geometry

A regular pentagon has a perimeter of \displaystyle 60 yards and an apothem length of \displaystyle 8.3 yards. Find the area of the pentagon. 

Possible Answers:

\displaystyle 249 \displaystyle yards^2

\displaystyle 96 \displaystyle yards^2

\displaystyle 200 \displaystyle yards^2

\displaystyle 48 \displaystyle yards^2

\displaystyle 248 \displaystyle yards^2

Correct answer:

\displaystyle 249 \displaystyle yards^2

Explanation:

To solve this problem, first work backwards using the perimeter formula for a regular pentagon: 

\displaystyle p=5(s)

\displaystyle 60=5(s)

\displaystyle s=\frac{60}{5}=12

Now you have enough information to find the area of this regular triangle. 
Note: a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. 

This question provides the length of the apothem of the pentagon—which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 12 and a height of \displaystyle 8.3

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}

\displaystyle A=\frac{8.3\times 12}{2}=\frac{99.6}{2}=49.8

Thus, the area of the entire pentagon is:

\displaystyle A=49.8\times 5=249

Example Question #785 : Intermediate Geometry

A regular pentagon has a side length of \displaystyle 15 and an apothem length of \displaystyle 10.3. Find the area of the pentagon.

Possible Answers:

\displaystyle 306.25 square units

\displaystyle 400.5 square units 

\displaystyle 383.5 square units

\displaystyle 386.25 square units

\displaystyle 270 square units

Correct answer:

\displaystyle 386.25 square units

Explanation:

By definition a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. 

This question provides the length of the apothem of the pentagon—which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 15 and a height of \displaystyle 10.3

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}


\displaystyle A=\frac{15\times 10.3}{2}=\frac{154.5}{2}=77.25

Keep in mind that this is the area for only one of the five total interior triangles. 

The total area of the pentagon is:

\displaystyle A=77.25\times 5=386.25

Example Question #786 : Intermediate Geometry

A regular pentagon has a perimeter of \displaystyle 50 and an apothem length of \displaystyle 7. Find the area of the pentagon. 

Possible Answers:

\displaystyle 175 square units

\displaystyle 135 square units

\displaystyle 70 square units

\displaystyle 170 square units

Correct answer:

\displaystyle 175 square units

Explanation:

To solve this problem, first work backwards using the perimeter formula for a regular pentagon: 

\displaystyle p=5(s)

\displaystyle 50=5(s)

\displaystyle s=\frac{50}{5}=10

Now you have enough information to find the area of this regular triangle. 
Note: a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. 

This question provides the length of the apothem of the pentagon—which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 10 and a height of \displaystyle 7

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}

\displaystyle A=\frac{10\times 7}{2}=\frac{70}{2}=35

To find the total area of the pentagon multiply:

\displaystyle 35\times5=175

Example Question #51 : Pentagons

A regular pentagon has a side length of \displaystyle 25 and an apothem length of \displaystyle 17.2. Find the area of the pentagon.

Possible Answers:

\displaystyle 1,075 square units

\displaystyle 900 square units

\displaystyle 725 square units

\displaystyle 1,350 square units

\displaystyle 215 square units

Correct answer:

\displaystyle 1,075 square units

Explanation:

By definition a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. 

This question provides the length of the apothem of the pentagon—which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 25 and a height of \displaystyle 17.2

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}


\displaystyle A=\frac{25\times 17.2}{2}=\frac{430}{2}=215

However, the total area of the pentagon is equal to: 

\displaystyle 215\times 5= 1,075

Example Question #51 : Pentagons

A regular pentagon has a side length of \displaystyle 7 and an apothem length of \displaystyle 4.8. Find the area of the pentagon.

Possible Answers:

\displaystyle 133.6 sq. units

\displaystyle 68 sq. units

\displaystyle 33.6 sq. units

\displaystyle 84 sq. units

\displaystyle 16.8 sq. units

Correct answer:

\displaystyle 84 sq. units

Explanation:

By definition a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. 

This question provides the length of the apothem of the pentagon—which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 7 and a height of \displaystyle 4.8

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}


\displaystyle A=\frac{7\times 4.8}{2}=\frac{33.6}{2}=16.8

Note: \displaystyle 16.8 is only the measurement for one of the five interior triangles. Thus, the solution is: 

\displaystyle 16.8\times5=84

Example Question #4 : How To Find The Area Of A Pentagon

A regular pentagon has a perimeter of \displaystyle 65 and an apothem length of \displaystyle 8.9. Find the area of the pentagon. 

Possible Answers:

\displaystyle 280.50

\displaystyle 57.85

\displaystyle 289.25

\displaystyle 275.85

Correct answer:

\displaystyle 289.25

Explanation:

To solve this problem, first work backwards using the perimeter formula for a regular pentagon: 

\displaystyle p=5(s)

\displaystyle 65=5(s)

\displaystyle s=\frac{65}{5}=13

Now you have enough information to find the area of this regular triangle. 
Note: a regular pentagon must have \displaystyle 5 equal sides and \displaystyle 5 equivalent interior angles. 

This question provides the length of the apothem of the pentagon—which is the length from the center of the pentagon to the center of a side. This information will allow us to divide the pentagon into \displaystyle 5 equivalent interior triangles. Each triangle will have a base of \displaystyle 13 and a height of \displaystyle 8.9

The area of this pentagon can be found by applying the area of a triangle formula: 

\displaystyle A=\frac{base\times height}{2}

\displaystyle A=\frac{8.9\times 13}{2}=\frac{115.7}{2}=57.85

Thus, the area of the entire pentagon is:

\displaystyle A=57.85\times 5=289.25

Learning Tools by Varsity Tutors