Intermediate Geometry : How to find the equation of a perpendicular line

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Equation Of A Perpendicular Line

What line is perpendicular to \displaystyle y=\frac{-1}{2}x-3 through \displaystyle (1,5)?

Possible Answers:

\displaystyle 2x+y=3

\displaystyle 3x-y=4

\displaystyle 2x-y = -3

\displaystyle x+3y=1

\displaystyle x-y=5

Correct answer:

\displaystyle 2x-y = -3

Explanation:

\displaystyle y=\frac{-1}{2}x-3 is given in the slope-intercept form.  So the slope is \displaystyle \frac{-1}{2} and the y-intercept is \displaystyle -3.

If the lines are perpendicular, then \displaystyle m_{1}\cdot m_{2}=-1 so the new slope must be \displaystyle 2

Next we substitute the new slope and the given point into the slope-intercept form of the equation to calculate the intercept.  So the equation to solve becomes \displaystyle 5=2(1) +b so \displaystyle b=3

So the equation of the perpendicular line becomes \displaystyle y=2x+3 or in standard form \displaystyle 2x-y=-3

Example Question #1 : How To Find The Equation Of A Perpendicular Line

Which line below is perpendicular to \displaystyle 5x+6y=18?

Possible Answers:

\displaystyle y=-\frac{5}{6}x+\frac{6}{5}

\displaystyle y=\frac{5}{6}x+2

\displaystyle y = \frac{6}{5}x + 3

\displaystyle y=\frac{5}{6}x+\frac{6}{5}

\displaystyle y=-\frac{6}{5}x+8

Correct answer:

\displaystyle y = \frac{6}{5}x + 3

Explanation:

The definition of a perpendicular line is one that has a negative, reciprocal slope to another.

For this particular problem, we must first manipulate our initial equation into a more easily recognizable and useful form: slope-intercept form or \displaystyle y=mx+b.

\displaystyle 5x+6y=18

\displaystyle 6y=-5x+18

\displaystyle y=-\frac{5}{6}x+6

According to our \displaystyle y=mx+b formula, our slope for the original line is \displaystyle -\frac{5}{6}. We are looking for an answer that has a perpendicular slope, or an opposite reciprocal. The opposite reciprocal of \displaystyle -\frac{5}{6} is \displaystyle \frac{6}{5}. Flip the original and multiply it by \displaystyle -1

Our answer will have a slope of \displaystyle \frac{6}{5}. Search the answer choices for \displaystyle \frac{6}{5} in the \displaystyle m position of the \displaystyle y=mx+b equation.

is our answer. 

(As an aside, the negative reciprocal of 4 is \displaystyle -\frac{1}{4}. Place the whole number over one and then flip/negate. This does not apply to the above problem, but should be understood to tackle certain permutations of this problem type where the original slope is an integer.)

Example Question #1 : How To Find The Equation Of A Perpendicular Line

Find the equation of the line perpendicular to \displaystyle y=\frac{-1}{3}x+2.

Possible Answers:

\displaystyle y=\frac{1}{3}x+2

\displaystyle y=3x-2

\displaystyle y=-3x+2

\displaystyle y=-3x-2

\displaystyle y=3x+2

Correct answer:

\displaystyle y=3x+2

Explanation:

The definition of a perpendicular line is a line with a negative reciprocal slope and identical intercept.

Therefore we need a line with slope 3 and intercept 2.

This means the only fitting line is \displaystyle y=3x+2.

Example Question #1432 : Intermediate Geometry

Which one of these equations is perpendicular to:

\displaystyle y=x+2

Possible Answers:

\displaystyle y=-2x+5

\displaystyle y=2

\displaystyle y=x

\displaystyle y=-x^2

\displaystyle y=-x+1

Correct answer:

\displaystyle y=-x+1

Explanation:

To find the perpendicular line to

\displaystyle y=x+2

we need to find the negative reciprocal of the slope of the above equation.

So the slope of the above equation is \displaystyle 1 since \displaystyle y changes by \displaystyle 1 when \displaystyle x is incremented.

The negative reciprocal is:

\displaystyle reciprocal=\frac{-1}{slope}

\displaystyle reciprocal=\frac{1}{-1}

\displaystyle reciprocal=-1

So we are looking for an equation with a \displaystyle -x.

Only \displaystyle y=-x+1 satisfies this condition.

Example Question #1433 : Intermediate Geometry

Suppose a line is represented by a function \displaystyle f(x) = 2x+4.  Find the equation of a perpendicular line that intersects the point \displaystyle (1,2).

Possible Answers:

\displaystyle f(x)=2x

\displaystyle f(x)= \frac{1}{2}x-1\frac{1}{2}

\displaystyle f(x)= -\frac{1}{2}x+2\frac{1}{2}

\displaystyle f(x)= -\frac{1}{2}x+1\frac{1}{2}

\displaystyle f(x)= -\frac{1}{2}x

Correct answer:

\displaystyle f(x)= -\frac{1}{2}x+2\frac{1}{2}

Explanation:

Determine the slope of the function \displaystyle f(x) = 2x+4.  The slope is: \displaystyle m1=2

The slope of a perpendicular line is the negative reciprocal of the original slope. Determine the value of the slope perpendicular to the original function.

\displaystyle m2 = - \frac{1}{m1} = -\frac{1}{2} 

Plug in the given point and the slope to the slope-intercept form to find the y-intercept.

\displaystyle y=mx+b

\displaystyle 2=\left(-\frac{1}{2}\right)(1)+b

\displaystyle b=2\frac{1}{2}

Substitute the slope of the perpendicular line and the new y-intercept back in the slope-intercept equation, \displaystyle y=mx+b.

The correct answer is:  \displaystyle f(x)= -\frac{1}{2}x+2\frac{1}{2}

Example Question #1 : How To Find The Equation Of A Perpendicular Line

Suppose a perpendicular line passes through \displaystyle y=2x-1 and point \displaystyle (-1,5).  Find the equation of the perpendicular line.

Possible Answers:

\displaystyle y=-2x-7

\displaystyle y=-\frac{1}{2}x-4\frac{1}{2}

\displaystyle y=-2x+3

\displaystyle y=-\frac{1}{2}x+4\frac{1}{2}

\displaystyle y=\frac{1}{2}x+5\frac{1}{2}

Correct answer:

\displaystyle y=-\frac{1}{2}x+4\frac{1}{2}

Explanation:

Find the slope from the given equation \displaystyle y=2x-1. The slope is: \displaystyle m1=2.

The slope of the perpendicular line is the negative reciprocal of the original slope.

\displaystyle m2=-\frac{1}{m1}=-\frac{1}{2}

Plug in the perpendicular slope and the given point to the slope-intercept equation.

\displaystyle y=mx+b

\displaystyle 5=\left(-\frac{1}{2}\right)(-1)+b

\displaystyle 5=\frac{1}{2}+b

\displaystyle b=4\frac{1}{2}

Plug in the perpendicular slope and the y-intercept into the slope-intercept equation to get the equation of the perpendicular line.

\displaystyle y=-\frac{1}{2}x+4\frac{1}{2}

Example Question #2 : Perpendicular Lines

Find a line perpendicular \displaystyle y=6x-5, but passing through the point \displaystyle (7,2).

Possible Answers:

\displaystyle y=\frac{1}{6}x-\frac{19}{6}

\displaystyle y=6x-\frac{19}{6}

\displaystyle y=6x+\frac{19}{6}

\displaystyle y=-\frac{1}{6}x-\frac{19}{6}

\displaystyle y=-\frac{1}{6}x+\frac{19}{6}

Correct answer:

\displaystyle y=-\frac{1}{6}x+\frac{19}{6}

Explanation:

Since we need a line perpendicular to  \displaystyle y=6x-5  we know our slope must be  \displaystyle m=-\frac{1}{6}. This is because perpendicular lines have slopes that are negative reciprocals of each other. In order for our new line to pass through the point \displaystyle (7,2) we must use the point slope formula. Be sure to use the perpendicular slope.

\displaystyle y-y_{1}=m(x-x_{1})

\displaystyle y-2=\frac{-1}{6}(x-7)

\displaystyle y=\frac{-1}{6}x+\frac{7}{6}+2

\displaystyle y=\frac{-1}{6}x+\frac{7}{6}+\frac{12}{6}

\displaystyle \mathbf{y=-\frac{1}{6}x+\frac{19}{6}}

Example Question #7 : How To Find The Equation Of A Perpendicular Line

A line is perpendicular to the line of the equation 

\displaystyle 5x+ 7y = 32

and passes through the point \displaystyle (-2, 8).

Give the equation of the line.

Possible Answers:

\displaystyle 5x- 7y = -66

\displaystyle 7x + 5y= 26

\displaystyle 7x- 5y= -54

\displaystyle 5x+ 7y = 46

Correct answer:

\displaystyle 7x- 5y= -54

Explanation:

A line perpendicular to another line will have as its slope the opposite of the reciprocal of the slope of the latter. Therefore, it is necessary to find the slope of the line of the equation 

\displaystyle 5x+ 7y = 32

Rewrite the equation in slope-intercept form \displaystyle y = mx+ b\displaystyle m, the coefficient of \displaystyle x, will be the slope of the line.

Add \displaystyle -5x to both sides:

\displaystyle 5x+ 7y + (-5x ) = 32 + (-5x )

\displaystyle 7y = -5x+32

Multiply both sides by \displaystyle \frac{1}{7}, distributing on the right:

\displaystyle \frac{1}{7} \cdot 7y = \frac{1}{7} \cdot( -5x+32)

\displaystyle y = -\frac{5}{7}x+\frac{32}{7}

The slope of this line is \displaystyle -\frac{5}{7}. The slope of the first line will be the opposite of the reciprocal of this, or \displaystyle \frac{7}{5}. The slope-intercept form of the equation of this line will be 

\displaystyle y = \frac{7}{5}x+b.

To find \displaystyle b, set \displaystyle x = -2 and \displaystyle y = 8 and solve:

\displaystyle 8 = \frac{7}{5} (-2)+b

\displaystyle 8 = - \frac{14}{5} +b

\displaystyle \frac{40}{5} = - \frac{14}{5} +b

Add \displaystyle \frac{14}{5} to both sides:

\displaystyle \frac{40}{5} + \frac{14}{5} = - \frac{14}{5} +b + \frac{14}{5}

\displaystyle \frac{54}{5} = b

The equation, in slope-intercept form, is \displaystyle y = \frac{7}{5}x+ \frac{54}{5}.

To rewrite in standard form with integer coefficients:

Multiply both sides by 5:

\displaystyle 5 y =5 \left (\frac{7}{5}x+ \frac{54}{5} \right )

\displaystyle 5 y =5 \left (\frac{7}{5}x \right ) + 5 \left ( \frac{54}{5} \right )

\displaystyle 5 y =7x+54

Add \displaystyle -5y-54 to both sides:

\displaystyle 5 y + (-5y-54) =7x+54 + (-5y-54)

\displaystyle -54 =7x -5y

or

\displaystyle 7x -5y = -54

Learning Tools by Varsity Tutors