ISEE Lower Level Quantitative : Coordinate Geometry

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Geometry

New_vt_custom_xy_plane5

The parallelogram shown above has a height of \(\displaystyle 4\) and a base of length \(\displaystyle 5\). Find the area of the parallelogram. 

Possible Answers:

\(\displaystyle 15\) square units

\(\displaystyle 16\) square units

\(\displaystyle 25\) square units

\(\displaystyle 20\) square units

Correct answer:

\(\displaystyle 20\) square units

Explanation:

To find the area of the parallelogram apply the formula: \(\displaystyle A=base\times height\)

Since, the paralleogram has a base of \(\displaystyle 5\) and a height of \(\displaystyle 4\) the solution is:
\(\displaystyle A=5\times4=20\)

Example Question #1 : How To Find A Parallelogram On A Coordinate Plane

New_vt_custom_xy_plane5

The parallelogram shown above has a height of \(\displaystyle 4\) and a base of length \(\displaystyle 5\). Find the perimeter of the parallelogram.

Possible Answers:

\(\displaystyle P=2(\sqrt{20}+4)\)

\(\displaystyle P=2(\sqrt{20}+5)\)

\(\displaystyle p=2(20+5)\)

\(\displaystyle P=(\sqrt{20}+5)\)

Correct answer:

\(\displaystyle P=2(\sqrt{20}+5)\)

Explanation:

In order to find the correct perimeter of the parallelogram apply the formula: \(\displaystyle P=2(a+b)\), where \(\displaystyle a=\) the length of one of the diagonal sides and \(\displaystyle b=\) the length of the base. 

In order to find the length of side \(\displaystyle a\), apply the formula: \(\displaystyle a^2+b^2=C^2\). By drawing an altitude from point \(\displaystyle (4,4)\) to \(\displaystyle (4,0)\), a right triangle is formed with a base that has a length of \(\displaystyle 2\) and a height of \(\displaystyle 4\).

Thus, the solution is:
\(\displaystyle a^2 +b^2=c^2\)
\(\displaystyle 2^2+4^2=\) length of side \(\displaystyle a^2\)
\(\displaystyle 4+16=20\)
\(\displaystyle a^2=20\)
\(\displaystyle a=\sqrt{20}\)

Therefore, 

\(\displaystyle P=2(\sqrt{20}+b)\)
\(\displaystyle b=5\)
\(\displaystyle P=2(\sqrt{20}+5)\)

Example Question #1 : Geometry

New_vt_custom_xy_plane6

Identify the coordinate points for the parallelogram that is shown above. 

Possible Answers:

\(\displaystyle (2,-2),(1,2),(3,2),(2,-1)\)

\(\displaystyle (-2,1), (-1,2), (-3,-2), (-2,-1)\)

\(\displaystyle (-2,-2),(1,2),(3,2),(2,-1)\)

\(\displaystyle (-2,-1), (-1,2), (3,2), (2,-1)\)

Correct answer:

\(\displaystyle (-2,-1), (-1,2), (3,2), (2,-1)\)

Explanation:

In order to identify the coordinate points for this parallelogram, notice that there must be two different pairs of coordinates with the same \(\displaystyle y\) values. 

Thus, the parallelogram has coordinate points: \(\displaystyle (-2,-1), (-1,2), (3,2), (2,-1)\)

Example Question #1 : Coordinate Geometry

New_vt_custom_xy_plane6

What is the area of the parallelogram shown above? 

Possible Answers:

\(\displaystyle 8\) square units

\(\displaystyle 10\) square units

\(\displaystyle 12\) square units

\(\displaystyle 14\) square units

Correct answer:

\(\displaystyle 12\) square units

Explanation:

To find the area of the parallelogram that is shown, apply the formula: \(\displaystyle A=base\times height\)
Since the parallelogram has a base of \(\displaystyle 4\) and a height of \(\displaystyle 3\) the solution is:
\(\displaystyle A=4\times 3=12\)

Example Question #1 : Coordinate Geometry

New_vt_custom_xy_plane6

Given that the above parallelogram has base sides with a length of \(\displaystyle 4\) and diagonal sides with a length of \(\displaystyle \sqrt{10}\) what is the perimeter of the parallelogram?  

Possible Answers:

\(\displaystyle P=2(10+4)\)

\(\displaystyle P=2(\sqrt{10}+3)\)

\(\displaystyle P=2(\sqrt{10}+4)\)

\(\displaystyle P=2(\sqrt{10}-4)\)

\(\displaystyle P=(\sqrt{10}+4)\)

Correct answer:

\(\displaystyle P=2(\sqrt{10}+4)\)

Explanation:

In order to find the perimeter of the parallelogram apply the formula: \(\displaystyle P=2(a+b)\), where \(\displaystyle a=\) the length of one diagonal side and \(\displaystyle b=\) the length of one base. 

In this problem, \(\displaystyle a=\sqrt{10}\) and \(\displaystyle b= 4\).
Thus, the correct answer is: \(\displaystyle P=2(\sqrt{10}+4)\)

Example Question #1 : How To Find A Parallelogram On A Coordinate Plane

New_vt_custom_xy_plane5

Identify the coordinate points for the parallelogram shown above. 

Possible Answers:

\(\displaystyle (-2,0), (4,4), (7,3), (9,4)\)

\(\displaystyle (2,5), (4,0), (7,1), (9,3)\)

\(\displaystyle (2,1), (4,4), (7,0), (9,-4)\)

\(\displaystyle (2,0), (4,4), (7,0), (9,4)\)

Correct answer:

\(\displaystyle (2,0), (4,4), (7,0), (9,4)\)

Explanation:

In order to identify the coordinate points for this parallelogram, notice that there must be two different pairs of coordinates with the same \(\displaystyle y\) values. 

Thus, the correct set of coordinates is: 
\(\displaystyle (2,0), (4,4), (7,0), (9,4)\)

Example Question #1 : How To Find A Rectangle On A Coordinate Plane

A shape is plotted on a coordinate axis. The endpoints are \(\displaystyle (2,0), (9,0), (2,4), and\ (9,4)\). What shape is it?

Possible Answers:

Triangle

Parallelogram

Rectangle

Trapezoid

Square

Correct answer:

Rectangle

Explanation:

Plot the points on a coordinate axis. Once it's graphed, you can see that there are two pairs of congruent, or equal, sides. The shape that best fits these characteristics is a rectangle.

Example Question #1 : How To Find A Rectangle On A Coordinate Plane

New_vt_custom_xy_plane2

Rectangle \(\displaystyle \small ABCD\) has coordinates: \(\displaystyle \small A(-4,-3)\),\(\displaystyle \small B(-4,1)\)\(\displaystyle \small C(3,1)\)\(\displaystyle \small D(3,-3)\). Find the area of rectangle \(\displaystyle \small ABCD\).

Possible Answers:

\(\displaystyle \small 26\) square units

\(\displaystyle \small 32\) square units

\(\displaystyle \small 28\) square units

\(\displaystyle \small 11\) square units

Correct answer:

\(\displaystyle \small 28\) square units

Explanation:

In order to find the area of rectangle \(\displaystyle \small ABCD\) apply the formula: \(\displaystyle \small A=width\times length\)

Since rectangle \(\displaystyle \small ABCD\) has a width of \(\displaystyle \small 7\) and a length of \(\displaystyle \small 4\) the solution is:

\(\displaystyle \small A=7\times4=28\) square units

Example Question #1 : How To Find A Rectangle On A Coordinate Plane

New_vt_custom_xy_plane2

Rectangle \(\displaystyle \small ABCD\) has coordinates: \(\displaystyle \small A(-4,-3)\),\(\displaystyle \small B(-4,1)\)\(\displaystyle \small C(3,1)\)\(\displaystyle \small D(3,-3)\). What is the perimeter?

Possible Answers:

\(\displaystyle \small 22\)

\(\displaystyle \small 28\)

\(\displaystyle \small 23\)

\(\displaystyle \small 11\)

\(\displaystyle \small 21\)

Correct answer:

\(\displaystyle \small 22\)

Explanation:

To find the perimeter of rectangle \(\displaystyle \small ABCD\), apply the formula: \(\displaystyle \small p=2(width)+2(length)\)

Thus, the solution is:

\(\displaystyle \small p=2(7)+2(4)\)
\(\displaystyle \small p=14+8\)
\(\displaystyle \small p=22\)

Example Question #1 : How To Find A Rectangle On A Coordinate Plane

Rectangle \(\displaystyle ABCD\) has coordinate points: \(\displaystyle A(-2,2)\)\(\displaystyle B(-2,4)\)\(\displaystyle C(2,4)\)\(\displaystyle D(2,2)\). Find the area of rectangle \(\displaystyle ABCD\)

Possible Answers:

\(\displaystyle 8\) square units

\(\displaystyle 6\) square units

\(\displaystyle 4\) square units

\(\displaystyle 10\) square units

Correct answer:

\(\displaystyle 8\) square units

Explanation:

The area of rectangle \(\displaystyle ABCD\) can be found by multiplying the width and length of the rectangle. 

To find the length of the rectangle compare the x values of two of the coordinates:

Since \(\displaystyle A(-2,2), C(2,4)\) the length is \(\displaystyle 2-(-2)=4\).

To  find the width of the rectangle we need to look at the y coordinates of two of the points.

Since \(\displaystyle A(-2,2), C(2,4)\) the width is \(\displaystyle 4-2=2\).


The solution is:

\(\displaystyle A=w\times l\)
\(\displaystyle A=4\times2=8\)

Learning Tools by Varsity Tutors