All Calculus 1 Resources
Example Questions
Example Question #1 : Other Points
Find the critical points (rounded to two decimal places):
To find the critical points, set
and solve for .
Differentiate:
Set equal to zero:
Solve for
using the quadratic formula:
Example Question #2 : How To Graph Functions Of Points
Find the
value(s) of the critical point(s) of.
There are no real answers.
In order to find the critical points, we must find
and solve for
Set
Use the quadratic equation to solve for
.Remember that the quadratic equation is as follows.
, where a,b and c refer to the coefficents in the
equation
.In this case,
, , and .After plugging in those values, we get
.
So the critical points
values are:
Example Question #3 : How To Graph Functions Of Points
Find the
value(s) of the critical point(s) of.
In order to find the critical points, we must find
and solve for .
Set
Use the quadratic equation to solve for
.Remember that the quadratic equation is as follows.
, where a,b and c refer to the coefficents in the equation .
In this case,
, , and .After plugging in those values, we get.
So the critical points
values are,
Example Question #101 : Graphing Functions
Find the critical points of
The critical points are complex.
First we need to find
.
Now we set
Now we can use the quadratic equation in order to find the critical points.
Remember that the quadratic equation is
,
where a,b,c refer to the coefficients in the equation
In this case, a=3, b=6, and c=1.
Thus are critical points are
Example Question #5 : Other Points
Find the critical points of
.
There are no critical points.
In order to find the critical points, we need to find
using the power rule .
Now we set
, and solve for .
Thus
is a critical point.Example Question #1 : How To Graph Functions Of Points
Find the critical point(s) of
.
and
and
and
To find the critical point(s) of a function
, take its derivative , set it equal to , and solve for .Given
, use the power ruleto find the derivative. Thus the derivative is, .
Since
:
The critical point
is .Example Question #101 : Graphing Functions
Find the critical points of
.
There are no critical points
In order to find the critical points, we must find
using the power rule .
.
Now we set
.
Now we use the quadratic equation in order to solve for
.Remember that the quadratic equation is as follows.
,
where a,b,c correspond to the coefficients in the equation
.
In this case, a=9, b=-40, c=4.
Then are critical points are:
Example Question #2 : Other Points
Find all the critical points of
.
There are no critical points.
In order to find the critical points, we first need to find
using the power rule ..
Now we set
.
Thus the critical points are at
, and
.
Example Question #2 : How To Graph Functions Of Points
Find the critical points of the following function:
To find critical points the derivative of the function must be found.
Critical points occur where the derivative equals zero.
Example Question #102 : Graphing Functions
Determine the point on the graph that is not changing if
.
To find the point where the graph of
is not changing, we must set the first derivative equal to zero and solve for .To evaluate this derivate, we need the following formulae:
Now, setting the derivate equal to
to find where the graph is not changing:
Now, to find the corresponding
value, we plug this value back into :
Therefore, the point where
is not changing isCertified Tutor
All Calculus 1 Resources
